K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2021

\(\Delta\)ABC là \(\Delta\)đều => AB=BC=CA mà D,E,F là trung điểm của AB,BC,CA=>AD=DB=BF=CF=CE=EA

xét \(\Delta\)ADE và \(\Delta\)BFD có:

AD=BF(cmt)

góc A=góc B(\(\Delta\)ABC là \(\Delta\)đều)

AE=BD(cmt)

=> \(\Delta\)ADE = \(\Delta\)BFD(c.g.c)(1)

xét \(\Delta\)BFD và\(\Delta\)CEF có:

BD=CE(cmt)

góc B=góc C(\(\Delta\)ABC là \(\Delta\)đều)

BF=CF(cmt)

=> \(\Delta\)ADE = \(\Delta\)BFD(c.g.c)(2)

từ(1) và(2)=> \(\Delta\)ADE = \(\Delta\)BFD= \(\Delta\)BFD=>DE=DF=FE=>\(\Delta\)DEF là \(\Delta\)đều

 

Xét ΔABC có 

D là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: DF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: DF//AC và \(DF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔABC có

F là trung điểm của BC(gt)

E là trung điểm của AC(gt)

Do đó: FE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)Suy ra: FE//AB và \(FE=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Xét ΔABC có 

D là trung điểm của AB(gt)

E là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(3)

Ta có: ΔABC đều(gt)

nên AB=AC=BC(4)

Từ (1), (2), (3) và (4) suy ra DE=EF=DF

Xét ΔDEF có DE=DF=EF(cmt)

nên ΔDEF đều(Định nghĩa tam giác đều)

Xét ΔBDE và ΔAFD có

BE=AD

góc EBD=góc DAF

AF=BD

=>ΔBDE=ΔAFD

=>DE=FD

Xét ΔBDE và ΔCEF có

BE=CF

góc DBE=góc ECF

BD=CE

=>ΔBDE=ΔCEF

=>DE=EF=FD

=>ΔDEF đều

A B C D E F

Đề sai rồi nhé \(E\varepsilon AB\)! mới đúng

10 tháng 1 2021

undefined

undefined

10 tháng 1 2021

giỏi đấy

6 tháng 9 2017

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0