K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P\left(x\right)=x^5+2x^4-9x^3-x\)

\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)

b: Hệ số cao nhất của P(x) là 1

Hệ số tự do của P(x) là 0

20 tháng 5 2022

`a)`

`@P(x)=x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4`

   `P(x)=x^5+(7x^4-5x^4)-9x^3-(2x^2-2x^2)-x`

  `P(x)=x^5+2x^4-9x^3-x`

`@Q(x)=5x^4-x^5+4x^2-6+9x^3-8+x^5`

   `Q(x)=(-x^5+x^5)+5x^4+9x^3+4x^2-(6+8)`

   `Q(x)=5x^4+9x^3+4x^2-14`

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`b)` Đa thức `P(x)` có:

  `@` Hệ số cao nhất: `1`

  `@` Hệ số tự do: `0`

20 tháng 5 2022

a)\(P\left(x\right)=x^5+2x^4-9x^3-x\)

\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)

b) Sửa  Tìm hệ số cao nhất và hệ số tự do của đa thức Q(x)

 hệ số cao nhất :9

 hệ số tự do  :- 14

c)\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(\Leftrightarrow M\left(x\right)=x^5+2x^4-9x^3-x+5x^4+9x^3+4x^2-14\)

\(M\left(x\right)=x^5+6x^4-x-14\)

20 tháng 5 2022

d)\(M\left(2\right)=2^5+6.2^4-2-14=32-96-2-14=-80\)

\(M\left(-2\right)=\left(-2\right)^5+6.\left(-2\right)^4+2-14=-32-96+2-14=-140\)

\(M\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5+6.\left(\dfrac{1}{2}\right)^4-\dfrac{1}{2}-14=\dfrac{1}{32}+\dfrac{3}{8}-\dfrac{1}{2}-14=-\dfrac{475}{32}\)

12 tháng 4 2022

a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)

\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)

\(=x^2-9x+14\)

\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)

\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)

\(=x^6+2x^2+3\)

b) Đa thức M(x) có hệ số cao nhất là 1 

                                hệ số tự do là 14

                                bậc 2

 Đa thức N(x) có hệ số cao nhất là 1 

                            hệ số tự do là 3 

                            bậc 6

a: \(P\left(x\right)=x^4+x^3-x^2+2x-5\)

\(Q\left(x\right)=x^4+5x^3-3x^2-2x-5\)

b: \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=-4x^3+2x^2+4x\)

c: Bậc của H(x) là 3

 

20 tháng 5 2022

Còn câu D bạn ơi

20 tháng 5 2022

chị thấy câu B hơi rối

a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3

=4x^4-9x^3+x^2-5x+3

Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x

=5x^4-3x^3+4x^2-5x-2

b)

P(x)

-bậc:4

-hệ số tự do:3

-hệ số cao nhất:4

Q(x)

-bậc :4

-hệ số tự do :-2

-hệ số cao nhất:5

22 tháng 4 2022

a)\(M\left(x\right)=3x^4-x^3-2x^2+5x+7\)

\(N\left(x\right)=-3x^4+x^3+10x^2+x-7\)

 

22 tháng 4 2022

b)\(A\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(=>A\left(x\right)=3x^4-x^3-2x^2+5x+7-3x^4+x^3+10x^2+x-7\)

\(A\left(x\right)=8x^2+6x\)

\(B\left(x\right)=3x^4-x^3-2x^2+5x+7+3x^4-x^3-10x^2-x+7\)

\(B\left(x\right)=6x^4-2x^3-12x^2+x+14\)

5 tháng 4 2023

a,P(\(x\)) =  \(x^3\) - 2\(x\) + 6 + 3\(x\)4 - \(x\) + 2\(x\)3 - 2\(x\)2

   P(\(x\)) = (\(x^3\) + 2\(x^3\)) - ( 2\(x\) + \(x\) ) + 6 + 3\(x^4\) - 2\(x^2\)

   P(\(x\))  = 3\(x^3\) - 3\(x\) + 6 + 3\(x^4\)- 2\(x^2\)

   P(\(x\) )= 3\(x^4\) + 3\(x^3\) - 2\(x^2\) - 3\(x\) + 6

    Q(\(x\)) = \(x^3\) -  7 + 2\(x^2\) + 3\(x\) - 9\(x^2\) - 2 - 4\(x^3\)

   Q(\(x\)) =  (\(x^3\) - 4\(x^3\)) - ( 7 + 2) - (9\(x^2\) - 2\(x^2\)) + 3\(x\)

   Q(\(x\)) = -3\(x^3\) - 9 - 7\(x^2\) + 3\(x\)

  Q(\(x\)) = -3\(x^3\) - 7\(x^2\) + 3\(x\) - 9

Bậc  cao nhất của P(\(x\)) là 4; hệ số cao nhất là: 3; hệ số tự do là 6

Bậc cao nhất của Q(\(x\)) là 3; hệ số cao nhất là -3; hệ số tự do là -9

 

 

1:

a: f(x)=2x^4+2x^3+2x^2+5x+6

g(x)=x^4-2x^3-x^2-5x+3

c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9

K(x)=f(x)-2g(x)-4x^2

=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2

=6x^3+15x

c: K(x)=0

=>6x^3+15x=0

=>3x(2x^2+5)=0

=>x=0

d: H(x)=3x^4+x^2+9>=9

Dấu = xảy ra khi x=0

9 tháng 1

Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1

a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)

\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)

\(=-x^4+3x^3+x^2+x+6\)

\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)

\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)

\(=-x^5-2x^4-2x-1\)

b: Bạn ghi lại đề đi bạn