Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó:ΔABM=ΔAMC
Suy ra: MB=MC
b: BC=24cm
nên MB=MC=12cm
=>AM=16cm
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
hay ΔAHK cân tại A
a, Xét △ABM vuông tại M và △ACM vuông tại M
Có: AB = AC (△ABC cân tại A)
AM là cạnh chung
=> △ABM = △ACM (ch-cgv)
=> BM = CM (2 cạnh tương ứng)
=> M là trung điểm của BC
b, Ta có: BM + MC = BC => 2BM = 24 => BM = 12 (cm)
Xét △ABM vuông tại M có: AM2 + BM2 = AB2 (định lý Pytago)
=> AM2 + 122 = 202
=> AM2 = 202 - 122
=> AM2 = 256
=> AM = 16 (cm)
c, Xét △KAM vuông tại K và △IAM vuông tại I
Có: ∠KAM = ∠IAM (△ABM = △ACM)
AM là cạnh chung
=> △KAM = △IAM (ch-gn)
=> AK = AI (2 cạnh tương ứng)
=> △AKI cân tại A
d, Vì △AKI cân tại A (cmt) => ∠AKI = (180o - ∠KAI) : 2
Vì △ABC cân tại A (gt) => ∠ABC = (180o - ∠BAC) : 2
=> ∠AKI = ∠ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> KI // BC (dhnb)
a)vì tam giác ABC cân tại A
=>AB=AC và góc ABC=góc ACB
xét tam giác ABM và tam giác ACM có
góc AMB=góc AMC(= 90 độ)
AB=AC
góc ABM=góc ACM
=>tam giác ABM = tam giác ACM (c/h-g/n)
=>MB=MC(2 cạnh tương ứng)
b)ta có BC=24
mà MB=MC
=>M là trung điểm của BC
=>BM=MC=24/2=12 cm
xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:
\(AB^2=AM^2+BM^2\)
\(AM^2=AB^2-BM^2\)
\(AM^2=20^2-12^2\)
\(AM^2=400-144\)
AM^2=256
=>AM=16 cm
c)vì tam giác ABM = tam giác ACM(cmt)
=>góc BAM=góc CAM(2 góc tương ứng)
xét tam giác HAM và tam giác KAM có
góc AHM = góc AKM(= 90 độ)
cạnh AM chung
góc BAM=góc CAM
=>tam giác HAM = tam giác KAM(c/h-g/n)
=>AH=AK(2 cạnh tương ứng)
=>tam giác AHK cân tại A
d)mình không biết làm phàn này nha
a) Xét 2 tam giác vuông ABM và ACM có:
\(\widehat{B}\)=\(\widehat{C}\)( do tam giác ABC cân tại A )
AB = AC ( do tam giác ABC cân tại A )
Vậy tam giác ABM = tam giác ACM ( ch-gn)
\(\Rightarrow\)MB = MC
b) Ta có: BM=MC
Mà BM + MC= BC \(\Rightarrow\)BM= MC= \(\frac{BC}{2}\)= \(\frac{24}{2}\)=6cm
Tam giác ABM vuông tại M
Áp dụng định lí Py-ta-go ta có:
AB2 = AM2 + MB2
\(20^2\) = AM2 + \(6^2\)
AM2 = \(20^2\)- \(6^2\)
AM2 = 364
AM = \(\sqrt{364}\)
mk bt làm câu a, b thôi. Thông Cảm nha ^^
c) Xét \(\Delta\)AHM và \(\Delta\)AKM có:
^AHM = ^AKM = 90 độ
AM chung
^MAH = ^MAK ( \(\Delta\)ABM = \(\Delta\)CKM ; hai góc tương ứng bằng nhau)
=> \(\Delta\)AHM = \(\Delta\)AKM
=> AH = AK
=> \(\Delta\)AHK cân tại A
+) Xét S(AMB ) = \(\frac{1}{2}\)AM.MB = \(\frac{1}{2}\)MH.AB
=> AM.MB = MH.AB
=> 16.12=MH.20
=> MH = 9,6 cm.