Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét 2 tam giác vuông AEC và AED có:
AC=AD(gt)
AE cạnh chung
=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)
=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)
b, xét t.giác AIC và t.giác AID có:
AI cạnh chung
\(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)
AC=AD(gt)
=> t.giác AIC=t.giác AID(c.g.c)
=> IC=ID=> I là trung điểm của CD(1)
\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)
từ (1) và (2) suy ra AE là trung trực của CD
A B C D E I
Cho tam giác ABC vuông tại A có AB=6 cm , AB =8cm . Trên BA lấy điểm D sao cho BD=BC .Từ D kẻ DE vuông góc với BC tại E (E thuộc BC)
a)Tính độ dài cạnh BC
b)Chứng minh tam giác BAC = BED
c) Gọi H là giao điểm của DE và CA. Chứng minh BH là tia phân giác của góc DBC
B A D H E C
a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\) (định lí Pytago)
\(\Rightarrow BC=6^2+8^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vậy \(BC=10cm\).
b) Xét \(\Delta BDE\) và \(\Delta ABC\) có:
\(\widehat{BAC}=\widehat{BED}=90^o\)
\(AB=AC\left(gt\right)\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta ABC=\Delta EBD\) (cạnh huyền - góc nhọn) (đpcm)
c) Xét \(\Delta BCD\) có:
2 đường cao CA và DE cắt nhau tại H
\(\Rightarrow\)H là trực tâm của \(\Delta BCD\)
\(\Rightarrow BH\) là đường cao của \(\Delta BCD\) (1)
Vì AB = AC nên \(\Delta BCD\) cân tại B (2)
Từ (1), (2) \(\Rightarrow\) BH là đường cao đồng thời là tia phân giác của \(\widehat{CBD}\) (đpcm)
các bạn ơi AC=8cm nhá
MÌNH nghi bài náy sai đề mà cô hốí quá......giúp mình vs
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
a,A+B+C=180 độ \(\Rightarrow C=30\)độ
\(\Rightarrow A>B>C\Rightarrow AB< AC< BC\)(t/c............)
b, t/gBAD=t/gBKD(c-g-c) suy ra DA=DK
c,BDC cân vì có DBC=DCB=30 độ
d, théo t/c của tam giác vuông (cạnh đối diện vs góc 30 độ =1/2 cạnh huyền)
a, xét tam giác ABD, tam giác HBD có
AB=BH ;góc ABD= góc HBD ( vì phân giác) ,BD chung
suy ra 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh
b, vì 2 tam giác bằng nhau ( câu a) suy ra góc BAD= góc BDH mà BAD= 90 độ suy ra BHD =90 độ hay DH vuông góc với BC
C, nếu góc C =60 độ suy ra góc B = 0 độ suy ra góc ABD= 15 độ suy ra góc ADB = 90 độ -15 độ = 75 độ ( phụ nhau)
a, áp dụng định lí py-ta-go vào tam giác vuông ta có:
\(BC^2=AB^2+AC^2\)
=> \(AC^2=BC^2-AB^2\)
=> \(AC^2\)= 169 - 25 =144 cm
=> AC=12 cm
vậy AC=12 cm
b, xét 2 t.giác vuông ABE và DBE có:
AB=DB(gt)
BE cạnh chung
=> t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)
c, vì t.giác ABE=t.giác DBE(câu b) => AE=DE
xét 2 t.giác vuông AEF và DEC có:
AE=DE
\(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)
=> t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn kề)
=> È=EC(2 cạnh tương ứng)
d, gọi O là giao điểm của EB và AD
xét t.giác ABO và t.giác DBO có:
OB cạnh chung
\(\widehat{ABO}\)=\(\widehat{DBO}\)(t.giác ABE=t.giác DBE)
AB=BD(gt)
=> t.giác ABO=t.giác DBO(c.g.c)
=> OA=OD=> O là trung điểm của AD(1)
\(\widehat{AOB}\)=\(\widehat{DOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB}\)=\(\widehat{DOB}\)=90 độ => BO\(\perp\)AD(2)
từ (1) và (2) => BE là trung trực của AD
A B C D E 5cm 13cm F O
a) So sánh ∠B và ∠C
Xét ΔABC ta có: AC > AB (8 > 6) ⇒ ∠C > ∠B (định lí)
b) Tính BC ?
Áp dụng định lí Pytago vào ΔABC vuông tại A
Ta có: BC2 = AB2 + AC2
= 62 + 82
= 36 + 64 = 100
⇒ BC = 10 (cm)
c) EA = EH
Xét hai tam giác vuông ABE và HBE có:
∠ABE = ∠HBE (BE là phân giác)
BE : cạnh chung
Do đó: ΔABE = ΔHBE (cạnh huyền - góc nhọn)
⇒ EA = EH (hai cạnh tương ứng)