K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC vuông tại A

mà AP là đường trung tuyến

nên \(AP=\dfrac{BC}{2}=5\left(cm\right)\)

Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{1}{2}BC\)

=>\(MN=\dfrac{1}{2}\cdot10=5\left(cm\right)\)

b: Xét ΔABC có

N,P lần lượt là trung điểm của CA,CB

=>NP là đường trung bình của ΔABC

=>NP//AB và \(NP=\dfrac{AB}{2}\)

Ta có: NP//AB

M\(\in\)AB

Do đó: NP//AM

ta có: \(NP=\dfrac{AB}{2}\)

\(AM=\dfrac{AB}{2}\)=MB

Do đó; NP=AM=MB

Xét tứ giác AMPN có

AM//NP

AM=NP

Do đó: AMPN là hình bình hành

Hình bình hành AMPN có \(\widehat{MAN}=90^0\)

nên AMPN là hình chữ nhật

 

14 tháng 12 2023

a: Xét tứ giác ANMP có

\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)

=>ANMP là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

MN//AC

Do đó: N là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MP//AB
Do đó: P là trung điểm của AC

Xét ΔABC có

N,P lần lượt là trung điểm của AB,AC

=>NP là đường trung bình của ΔABC

=>NP//BC và NP=BC/2

=>NP//MH

Ta có: ΔHAC vuông tại H

mà HP là đường trung tuyến

nên HP=AP

mà AP=MN(ANMP là hình chữ nhật)

nên HP=MN

Xét tứ giác MHNP có MH//NP
nên MHNP là hình thang

Hình thang MHNP có MN=HP

nên MHNP là hình thang cân