K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

a) Nếu k có điều kiện a, b > 0 thì bất đẳng thức k thể xảy ra

b) Ta có : \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)

  \(\frac{ab}{c}+\frac{ac}{b}\ge2a\)

   \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng 2 vế của bất đẳng thức ta được :

\(2.\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2.\left(a+b+c\right)\)

=> bất đẳng thức cần chứng minh

8 tháng 6 2016

a) bn sai đề nhé,đề đúng là : \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\) nhé,vì mk làm rồi

Giả sử  \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\)

=> \(\frac{a+b}{ab}\) > \(\frac{4}{a+b}\)

=>\(\left(a+b\right)\left(a+b\right)\) > 4ab

=>\(\left(a+b\right)^2-4ab\) > 0

=>\(a^2+2ab+b^2-4ab\) > 0

=>\(a^2-2ab+b^2\) > 0

=>\(\left(a-b\right)^2\) > 0

BĐT cuối luôn đúng với mọi a;b

=>điều giả sử là đúng,ta có đpcm

(*)đề sai nên Kiệt ko ra là phải

 

8 tháng 6 2016

a) đề sai à bạn 4/a+b chứ

8 tháng 6 2016

b)Theo BĐT Côsi:

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)

Tương tự ta có:

\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm. 

Đẳng thức xảy ra khi a = b = c

21 tháng 3 2022

a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)

\(\Leftrightarrow\)a^2+2ab+b^2>=4ab

\(\Leftrightarrow\)a^2-2ab+b^2>=0

\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)

21 tháng 3 2022

b,\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\) 

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng

26 tháng 4 2022

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

26 tháng 4 2022

-Thôi, mình chịu rồi. Mình dùng tất cả các BĐT như Caushy, Schwarz, Caushy 3 số... nhưng không ra.

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

10 tháng 8 2023

tử vế phải là 3 hay 2 vậy bạn.

5 tháng 3 2021

a) Áp dụng bất đẳng thức AM-GM ta có ngay :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2\sqrt{\frac{ab^2c}{ac}}=2\sqrt{b^2}=2\left|b\right|=2b\)( do b > 0 )

=> đpcm

Đẳng thức xảy ra <=> a = b = c

b) Áp dụng bất đẳng thức AM-GM ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)(1) ( như a) đấy :)) )

tương tự : \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)(2) ; \(\frac{ab}{c}+\frac{ca}{b}\ge2a\)(3)

Cộng (1), (2), (3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a = b = c

c) \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)

\(=\frac{a^3}{2ab}+\frac{b^3}{2ab}+\frac{b^3}{2bc}+\frac{c^3}{2bc}+\frac{c^3}{2ca}+\frac{a^3}{2ca}\)

\(=\frac{a^2}{2b}+\frac{b^2}{2a}+\frac{b^2}{2c}+\frac{c^2}{2b}+\frac{c^2}{2a}+\frac{a^2}{2c}\)(I)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\left(I\right)\ge\frac{\left(a+b+b+c+c+a\right)^2}{2b+2a+2c+2b+2a+2c}=\frac{\left[2\left(a+b+c\right)\right]^2}{4\left(a+b+c\right)}=\frac{4\left(a+b+c\right)^2}{4\left(a+b+c\right)}=a+b+c\)

hay \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge a+b+c\)(đpcm)

Đẳng thức xảy ra <=> a = b = c

5 tháng 3 2021
Chia cả 2 vế cho b ta có : a2+c2>=2ac luôn đúng