K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

a) Xét ΔAMC và ΔDMB có 

MA=MD(gt)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB(gt)

Do đó: ΔAMC=ΔDMB(c-g-c)

Suy ra: \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//DB(Dấu hiệu nhận biết hai đường thẳng song song)

mà AC\(\perp\)AB(gt)

nên DB\(\perp\)AB

hay \(\widehat{ABD}=90^0\)

b) Xét ΔABD vuông tại B và ΔBAC vuông tại A có 

BA chung

BD=AC(ΔDMB=ΔAMC)

Do đó: ΔABD=ΔBAC(hai cạnh góc vuông)

c) Ta có: ΔABD=ΔBAC(cmt)

nên AD=BC(hai cạnh tương ứng)

mà \(AM=\dfrac{1}{2}AD\)(gt)

nên \(AM=\dfrac{1}{2}BC\)

Bài 5: 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

b) Xét ΔDBI vuông tại I và ΔDCI vuông tại I có 

DI chung

BI=CI(I là trung điểm của BC)

Do đó: ΔDBI=ΔDCI(hai cạnh góc vuông)

Suy ra: \(\widehat{DBI}=\widehat{DCI}\)(hai góc tương ứng)

c) Xét ΔECB có 

CD là đường trung tuyến ứng với cạnh EB

\(CD=\dfrac{EB}{2}\)

Do đó: ΔECB vuông tại C(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

Bài 4: 

a) Ta có: \(AM=\dfrac{1}{2}BC\)(gt)

mà \(BM=CM=\dfrac{1}{2}BC\)(gt)

nên AM=BM=CM

Xét ΔABM có MA=MB(cmt)

nên ΔABM cân tại M

Suy ra: \(\widehat{AMB}=180^0-2\widehat{MAB}\)

\(\Leftrightarrow180^0-\widehat{CMA}=180^0-2\widehat{MAB}\)

hay \(\widehat{CMA}=2\cdot\widehat{MAB}\)

Xét ΔACM có MA=MC(cmt)

nên ΔACM cân tại M

Suy ra: \(\widehat{AMC}=180^0-2\cdot\widehat{MAC}\)

\(\Leftrightarrow180^0-\widehat{BMA}=180^0-2\cdot\widehat{MAC}\)

hay \(\widehat{BMA}=2\cdot\widehat{MAC}\)

b) Ta có: \(\widehat{BAC}=\widehat{MAB}+\widehat{MAC}\)

\(=\dfrac{1}{2}\left(\widehat{AMB}+\widehat{AMC}\right)\)

\(=\dfrac{1}{2}\cdot180^0=90^0\)

12 tháng 12 2017

13 tháng 5 2017

22 tháng 4 2017

c/ Ta có tính chất: Trong 1 tam giác vuông, trung tuyến của góc vuông đến cạnh đối diện (cạnh huyền) sẽ bằng 1/2 cạnh huyền.

Xét tam giác vuông ABC, có trung tuyến AM, vậy AM=CM (=1/2 BC) => Tam giác ACM cân ( 2 cạnh bên bằng nhau) => ^ MCA=^MAC

Xét tam giác DMB và tam giác CMA

Có: CM=MB ( M trugn điểm)

      DM=AM ( gt)

      ^DMB=^CMA (đđ)

Vậy hai tam giác =nhau =>^BDM=^MAC và ^DBM=^

B suy tiếp nhé!

22 tháng 4 2017

Bạn tự vẽ hình nha!

Xét tam giác ABC vuông tại A, có: \(BC^2=AB^2+AC^2\)

                                                \(225=81+AC^2\)

                                                 \(\Rightarrow AC^2=144\)

                                                \(\Rightarrow AC=12\left(cm\right)\)

Xét tam giác MAB và tam giác MDC:

Có: DM=AM (gt)

      CM=MB (AM trung tuyến)

      Góc DMC=Góc AMB (đđ)

Vậy tam giác MAB= tam giác MDC (C.G.C)

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

b: XétΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC