K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5: 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

b) Xét ΔDBI vuông tại I và ΔDCI vuông tại I có 

DI chung

BI=CI(I là trung điểm của BC)

Do đó: ΔDBI=ΔDCI(hai cạnh góc vuông)

Suy ra: \(\widehat{DBI}=\widehat{DCI}\)(hai góc tương ứng)

c) Xét ΔECB có 

CD là đường trung tuyến ứng với cạnh EB

\(CD=\dfrac{EB}{2}\)

Do đó: ΔECB vuông tại C(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

Bài 4: 

a) Ta có: \(AM=\dfrac{1}{2}BC\)(gt)

mà \(BM=CM=\dfrac{1}{2}BC\)(gt)

nên AM=BM=CM

Xét ΔABM có MA=MB(cmt)

nên ΔABM cân tại M

Suy ra: \(\widehat{AMB}=180^0-2\widehat{MAB}\)

\(\Leftrightarrow180^0-\widehat{CMA}=180^0-2\widehat{MAB}\)

hay \(\widehat{CMA}=2\cdot\widehat{MAB}\)

Xét ΔACM có MA=MC(cmt)

nên ΔACM cân tại M

Suy ra: \(\widehat{AMC}=180^0-2\cdot\widehat{MAC}\)

\(\Leftrightarrow180^0-\widehat{BMA}=180^0-2\cdot\widehat{MAC}\)

hay \(\widehat{BMA}=2\cdot\widehat{MAC}\)

b) Ta có: \(\widehat{BAC}=\widehat{MAB}+\widehat{MAC}\)

\(=\dfrac{1}{2}\left(\widehat{AMB}+\widehat{AMC}\right)\)

\(=\dfrac{1}{2}\cdot180^0=90^0\)