K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2023

cô làm rồi em ơi https://olm.vn/cau-hoi/bai-3-tu-giac-abcd-co-goc-c-goc-d-90-do-chung-minh-rang-ac2-bd-ab2cd2.8140260328277

16 tháng 7 2023

loading...

Kéo dài DA và CB lần lượt về phía A và B cắt nhau tại E

Xét tam giác DCE có \(\widehat{DEC}\) = 1800 - (\(\widehat{EDC}\) + \(\widehat{ECD}\)) = 1800- 900 = 900

                      ⇒\(\Delta\)DEC vuông tại E

Xét \(\Delta\)AEB Theo pytago ta có: AE2 + BE2 = AB2

Tương tự ta có:                       DE2 + CE2 = DC2

Cộng vế với vế ta có:              AE2 + BE2 + DE2 + CE2 = AB2+DC2

                                             AE2 + CE2+BE2+DE2 = AB2+DC2 (1)

Xét \(\Delta\)AEC theo pytago ta có: AE2+ CE2 = AC2

Tương tự ta có:                      BE2 + DE2 = BD2

Cộng vế với vế ta có:             AE+ CE2 + BE2+ DE2 = AC2 + BD2 (2)

Từ (1) và (2) ta có: AC2 + BD2 = AB2 + DC2(đpcm)

                                            

 

12 tháng 10 2019

Xét tam giác ABD có MN là đường trung bình => MN//=AD/2

Xét tam giác ACD có PQ là đường trung bình => PQ//=AD/2

=> MN//=PQ => Tứ giác MNPQ Là hình bình hành (1)

Tương tự ta cũng chứng minh được NP//=MQ//=BC/2

Ta có ^DAB+^AMN=180 (Hai góc trong cùng phía)

Ta có ^CBA+^BMQ=180 (lý do như trên)

=> (^DAB+^CBA)+(^AMN+^BMQ)=360 => ^AMN+^BMQ=360-^DAB+^CBA=360-270=90

Ta có ^AMB=^AMN+^BMQ+^NMQ=180=> ^NMQ=180-^AMN+^BMQ=180-90=90 (2)

Từ (1) và (2) => MNPQ là hình chữ nhật

Vì BD là phân giác của ABC và ADC 

Xét ∆ADB ta có :

A + ABD + ADB = 180°

ABD + ADB = 180 - 85 = 95°

Mà 2ABD + 2ADB = 95°

=> ABC + ADC = 95 * 2 = 190° 

Mà A + ABC + ADC + C = 360°

=> C = 360 - 85 - 190 = 85°

30 tháng 12 2018

c,

- Gọi O là giao điểm của AC và BD. 
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC. 
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD. 
=>Tam giác ABO cân tại O => 0A=0B.(1) 
Tương tự tam giác ODC cân tại O =>OD=OC.(2) 
Lại có góc AOD=góc BOC (đối đỉnh ) (3) 
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra : 
+ AD=BC (*) 
+ Góc ADB=góc BCA(**) 
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )