Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\dfrac{2}{3}\right).\left(1+\dfrac{2}{4}\right).\left(1+\dfrac{2}{5}\right)....\left(1+\dfrac{2}{2020}\right).\left(1+\dfrac{2}{2021}\right)\)
= \(\dfrac{5}{3}.\dfrac{6}{4}.\dfrac{7}{5}.\dfrac{8}{6}.\dfrac{9}{7}....\dfrac{2022}{2020}.\dfrac{2023}{2021}\)
= \(\dfrac{1}{3}.\dfrac{1}{4}.2022.2023\)
= \(\dfrac{337.2023}{2}\)
= \(\dfrac{\text{681751}}{2}\)
ÉT Ô ÉT
Câu 3: Tìm x biết:
|x + 1| + |x + 2| + |x + 2020| = 4x
Giúp mik với!!!
Mik hứa Tick cho… Pls
TH1 : \(x< -2020\)
<=> | x + 1 | + | x + 2 | + | x + 2020 | = - ( x + 1 ) - ( x + 2 ) - ( x + 2020 ) = 4x
<=> -3x - 2023 = 4x <=> -7x = 2023 <=> x = -289
TH2 : \(-2020\le x< -2\)
<=> | x + 1 | + | x + 2 | + | x + 2020 | = - ( x + 1 ) - ( x + 2 ) + x + 2020 = 4x
<=> -x + 2017 = 4x
<=> -5x = -2017 <=> x = 2017/5 ( = 403,4 )
TH3 : \(-2\le x< -1\)
<=> | x + 1 | + | x + 2 | + | x + 2020 | = - ( x + 1 ) + x + 2 + x + 2020 = 4x
<=> x + 2021 = 4x <=> -3x = -2021 <=> x = 2021/3
TH4 : \(x>-1\)
<=> | x + 1 | + | x + 2 | + | x + 2020 | = x + 1 + x + 2 + x + 2020 = 4x
<=> 3x + 2023 = 4x
<=> -x = -2023 <=> x = 2023
Vậy...
TH1: x ≥ 0
Khi đó \(\left|x+1\right|+\left|x+2\right|+\left|x+2020\right|=x+1+x+2+x+2020\)
\(=3x+2023=4x\)
Suy ra \(4x-3x=x=2023\) (thỏa mãn điều kiện)
TH2: x < 0
Khi đó 4x < 0 hay vế phải luôn là một số âm. Tuy nhiên vế trái luôn luôn có giá trị lớn hơn 0 nên luôn là 0 hoặc là một số dương, suy ra vô lí.
Tóm lại, x = 2023.
Ta có: \(\left|x+\frac{1}{2021}\right|\ge0\) ; \(\left|x+\frac{2}{2021}\right|\ge0\) ; ... ; \(\left|x+\frac{2020}{2021}\right|\ge0\) \(\left(\forall x\right)\)
\(\Rightarrow\left|x+\frac{1}{2021}\right|+\left|x+\frac{2}{2021}\right|+...+\left|x+\frac{2020}{2021}\right|\ge0\left(\forall x\right)\)
\(\Rightarrow2021x\ge0\Rightarrow x\ge0\)
Từ đó ta được: \(x+\frac{1}{2021}+x+\frac{2}{2021}+...+x+\frac{2020}{2021}=2021x\)
\(\Leftrightarrow2020x+\frac{1+2+...+2020}{2021}=2021x\)
\(\Leftrightarrow x=\frac{\left(2020+1\right)\left[\left(2020-1\right)\div1+1\right]}{2021}\)
\(\Leftrightarrow x=\frac{2021\cdot2020}{2021}=2020\)
Vậy x = 2020
\(\left|\frac{x+1}{2021}\right|+\left|\frac{x+2}{2021}\right|+...+\left|\frac{x+2020}{2021}\right|=2021x\)
Ta có:\(\left|\frac{x+1}{2021}\right|\ge0;\left|\frac{x+2}{2021}\right|\ge0;....;\left|\frac{x+2020}{2021}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x+1}{2021}\right|+\left|\frac{x+2}{2021}\right|+...+\left|\frac{x+2020}{2021}\right|\ge0\forall x\)
\(\Rightarrow2021x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\frac{x+1}{2021}+\frac{x+2}{2021}+...+\frac{x+2020}{2021}=2021x\)
\(\Rightarrow x+\frac{1}{2021}+x+\frac{2}{2021}+...+x+\frac{2020}{2021}=2021x\)
\(\Rightarrow2020x+\frac{1+2+...+2020}{2021}=2021x\)
\(\Rightarrow x=2020\)
\(\dfrac{x+1}{2023}+\dfrac{x+2}{2022}=\dfrac{x+3}{2021}+\dfrac{x+4}{2020}\\ \Leftrightarrow\dfrac{x+1}{2023}+1+\dfrac{x+2}{2022}+1=\dfrac{x+3}{2021}+1+\dfrac{x+4}{2020}+1\\ \Leftrightarrow\dfrac{x+1+2023}{2023}+\dfrac{x+2+2022}{2022}-\dfrac{x+3+2021}{2021}-\dfrac{x+4+2020}{2020}=0\\ \Leftrightarrow\left(x+2024\right)\times\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)=0\\ \Rightarrow x+2024=0:\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)\\ \Rightarrow x+2024=0\\ \Rightarrow x=-2024\)
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
\(\dfrac{x+2}{2021}+\dfrac{x+3}{2020}=\dfrac{x+2021}{2}+\dfrac{x+2020}{3}\)
\(=>\dfrac{x+2}{2021}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2021}{2}+1+\dfrac{x+2020}{3}+1\)
\(=>\dfrac{x+2+2021}{2021}+\dfrac{x+3+2020}{2020}=\dfrac{x+2021+2}{2}+\dfrac{x+2020+3}{3}\)
\(=>\dfrac{x+2023}{2021}+\dfrac{x+2023}{2020}-\dfrac{x+2023}{2}-\dfrac{x+2023}{3}=0\)
\(=>(x+2023)(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2}-\dfrac{1}{3})=0\)
Mà \(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2}-\dfrac{1}{3} \ne 0\)
\(=>x+2023=0\)
\(=>x=-2023\)
Thanks