Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét ΔABC cân tại A có AE là trung tuyến
⇒ AE cũng là đường cao của ΔABC
⇒ AE⊥BC \(\Rightarrow\widehat{AEB}=\widehat{AEC}=90^o\)
Xét tứ giác ADBE có \(\widehat{ADB}\) và \(\widehat{AEB}\) cùng nhìn AB dưới góc 90o
⇒ ADBE là tứ giác nội tiếp
⇒ 4 điểm A,D,B,E cùng thuộc (O)
b) Vì BD⊥AC hay HD⊥AC ⇒ ΔHDC vuông tại D
⇒ Tâm của đường tròn đi qua 3 điểm H,D,C là trung điểm của HC
hay I là trung điểm của HC
c) Xét tứ giác HDCE có 2 góc đối \(\widehat{HDC}+\widehat{HEC}=90^o+90^o=180^o\)
⇒ HDCE là tứ giác nội tiếp
⇒ 2 điểm H,E thuộc (I)
Mà 2 điểm H,E cũng thuộc (O)
⇒ Đường tròn tâm O và đường tròn tâm I có 2 điểm chung
a: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến ứng với cạnh đáy BC
nên AE là đường cao ứng với cạnh BC
Xét tứ giác ADEB có
\(\widehat{ADB}=\widehat{AEB}=90^0\)
Do đó: ADEB là tứ giác nội tiếp
hay A,D,E,B cùng thuộc 1 đường tròn
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
\(c,\left\{{}\begin{matrix}-4x+ay=1+a\\\left(6+a\right)x+2y=3+b\end{matrix}\right.\)
Để hpt có nghiệm duy nhất \(\Leftrightarrow\dfrac{-4}{6+a}\ne\dfrac{a}{2}\Leftrightarrow a^2+6a+8\ne0\Leftrightarrow\left\{{}\begin{matrix}a\ne-2\\a\ne-4\end{matrix}\right.\)
Để hpt vô nghiệm \(\Leftrightarrow\dfrac{-4}{6+a}=\dfrac{a}{2}\ne\dfrac{1+a}{3+b}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-4}{6+a}=\dfrac{a}{2}\\\dfrac{a}{2}\ne\dfrac{1+a}{3+b}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=-2\\a=-4\end{matrix}\right.\\2+2a\ne3a+ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=-2\\a=-4\end{matrix}\right.\\a\ne2-ab\end{matrix}\right.\)
Để hpt có vô số nghiệm \(\Leftrightarrow\dfrac{-4}{6+a}=\dfrac{a}{2}=\dfrac{1+a}{3+b}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-4}{6+a}=\dfrac{a}{2}\\\dfrac{a}{2}=\dfrac{1+a}{3+b}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=-2\\a=-4\end{matrix}\right.\\2+2a=3a+ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=-2\\a=-4\end{matrix}\right.\\a=2-ab\end{matrix}\right.\)
Câu 2:
Ta có: \(\sqrt{x^2-4x+4}=x-1\)
\(\Leftrightarrow2-x=x-1\left(x< 2\right)\)
\(\Leftrightarrow-2x=-3\)
hay \(x=\dfrac{3}{2}\left(tm\right)\)
bài 1:
\(\left\{{}\begin{matrix}x+y=57\\4x-2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+4y=228\\4x-2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6y=234\\x+y=57\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=39\\x=18\end{matrix}\right.\)