K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

a)Xét ΔABC cân tại A có AE là trung tuyến

 ⇒ AE cũng là đường cao của ΔABC

 ⇒ AE⊥BC \(\Rightarrow\widehat{AEB}=\widehat{AEC}=90^o\)

Xét tứ giác ADBE có \(\widehat{ADB}\) và \(\widehat{AEB}\) cùng nhìn AB dưới góc 90o

 ⇒ ADBE là tứ giác nội tiếp

  ⇒ 4 điểm A,D,B,E cùng thuộc (O)

b) Vì BD⊥AC hay HD⊥AC ⇒ ΔHDC vuông tại D

         ⇒ Tâm của đường tròn đi qua 3 điểm H,D,C là trung điểm của HC

hay I là trung điểm của HC

c) Xét tứ giác HDCE có 2 góc đối \(\widehat{HDC}+\widehat{HEC}=90^o+90^o=180^o\)

    ⇒  HDCE là tứ giác nội tiếp

  ⇒ 2 điểm H,E thuộc (I)

Mà 2 điểm H,E cũng thuộc (O)

 ⇒ Đường tròn tâm O và đường tròn tâm I có 2 điểm chung

a: Ta có: ΔABC cân tại A

mà AE là đường trung tuyến ứng với cạnh đáy BC

nên AE là đường cao ứng với cạnh BC

Xét tứ giác ADEB có 

\(\widehat{ADB}=\widehat{AEB}=90^0\)

Do đó: ADEB là tứ giác nội tiếp

hay A,D,E,B cùng thuộc 1 đường tròn

29 tháng 11 2023
  • Gọi I là giao điểm của EG và HF.
  • Theo định lí tiếp tuyến, ta có: $\angle{OBE} = \angle{OBF} = 90^\circ$ và $\angle{ODF} = \angle{ODG} = 90^\circ$.
  • Vì $BE$ và $DF$ là tiếp tuyến của đường tròn (O), nên $OE$ và $OF$ là phân giác của $\angle{BOD}$.
  • Tương tự, $OG$ và $OH$ là phân giác của $\angle{BOD}$.
  • Khi đó, ta có: $\angle{EOI} = \angle{FOI} = \angle{GOI} = \angle{HOI} = 90^\circ$.
  • Do đó, $OEIF$ và $OFIG$ là các hình chữ nhật.
  • Vì $OE = OF$ và $OG = OH$, nên $OEIF$ và $OFIG$ là các hình vuông.
  • Từ đó, ta có: $BE = EF$ và $DG = GH$.
  • Vì $ABCD$ là hình thoi, nên $AB = AD$ và $BC = CD$.
  • Khi đó, ta có: $AB = AD = BE + EF = BE + DF$ và $BC = CD = DG + GH = EG + HF$.
  • Từ đó, ta suy ra: $BE + DF = EG + HF$.
  • Do đó, $BE.DF = EG.HF$.
  • Từ định lí tiếp tuyến, ta có: $BE.DF = OB^2$ và $EG.HF = OG^2$.
  • Vì $OB = OG$ (bán kính đường tròn (O)), nên ta có: $BE.DF = OB.OD$.

Vậy, ta đã chứng minh được a) BE.DF = OB.OD.

b) Ta có:

  • Gọi I là giao điểm của EG và HF.
  • Theo chứng minh ở câu a), ta có: $OEIF$ và $OFIG$ là các hình vuông.
  • Khi đó, ta có: $\angle{EOI} = \angle{FOI} = \angle{GOI} = \angle{HOI} = 90^\circ$.
  • Do đó, ta có: $\angle{EOI} + \angle{FOI} + \angle{GOI} + \angle{HOI} = 360^\circ$.
  • Từ đó, ta suy ra: $\angle{EOI} + \angle{FOI} + \angle{GOI} + \angle{HOI} = 360^\circ$.
  • Vì $EG \parallel HF$, nên ta có: $\angle{EOI} + \angle{FOI} = 180^\circ$.
  • Từ đó, ta suy ra: $\angle{GOI} + \angle{HOI} = 180^\circ$.
  • Do đó, ta có: $\angle{GOI} = \angle{HOI}$.
  • Vậy, ta đã chứng minh được b) EG // HF.

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

30 tháng 12 2021

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

ta có: 
gọi H là trung điểm BC
AH=6
sinB=AH/AB=6/10
theo định lí sin: AC/sinB=2R
<=>10/(6/10)=2R=>R=25/3 cm ( ngoại tiếp)
S=1/2.AH.BC=48
p=18
S=pr
=>r=S/p=48/18=2,6 (nội tiếp)

15 tháng 10 2021

Gọi AM là đg cao tg ABC thì AM cũng là trung tuyến

Do đó \(BM=\dfrac{1}{2}BC=8\left(cm\right)\)

Áp dụng PTG: \(AM=\sqrt{AB^2-BM^2}=6\left(cm\right)\)

Ta có \(S=p\cdot r\) với p là nửa chu vi, S là diện tích, r là bán kính đg tròn nt tg ABC

Mà \(S=\dfrac{1}{2}AM\cdot BC=48\left(cm^2\right);p=\dfrac{10\cdot2+16}{2}=18\left(cm\right)\)

\(\Rightarrow r=\dfrac{S}{p}=\dfrac{48}{18}\approx2,7\left(cm\right)\)

11 tháng 3 2022

\(\Delta'=4-\left(m-1\right)=5-m\)

để pt có nghiệm kép khi \(5-m=0\Leftrightarrow m=5\)

chọn B 

NV
11 tháng 3 2022

Phương trình có nghiệm kép khi:

\(\Delta'=4-\left(m-1\right)=0\Leftrightarrow5-m=0\)

\(\Rightarrow m=5\)