Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)
\(x=-3;y=6\)
b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
\(x=-52;y=-65\)
c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)
\(x=28;y=16\)
Ta có: \(\frac{x}{y}=\frac{-7}{4}\Rightarrow\frac{x}{-7}=\frac{y}{4}\)
Suy ra \(\frac{4x}{-28}=\frac{5y}{20}\)
Áp dụng tính chất dãy các tỉ số bằng nhau, ta có:
\(\frac{4x}{-28}=\frac{5y}{20}=\frac{4x-5y}{-28-20}=\frac{-3}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-3}{2}.\left(-7\right)=\frac{21}{2}\\y=\frac{-3}{2}.4=-6\end{cases}}\)
Vậy \(x=\frac{21}{2}\) và y = -6
đặt \(\frac{x}{-3}=\frac{y}{8}=k\) \(\Rightarrow x=-3k;y=8k\)
\(x^2-y^2=-\frac{44}{5}\)\(\Leftrightarrow\left(-3k\right)^2-\left(8k\right)^2=9k^2-64k^2=-55k^2=\frac{-44}{5}\)
\(\Rightarrow k^2=\frac{4}{25}\Rightarrow k=\pm\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-6}{5};y=\frac{16}{5}\\x=\frac{6}{5};y=\frac{-16}{5}\end{cases}}\)
4x = 5y
=> x/5 = y/4 và y - 2x = -5
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{5}=\frac{y}{4}=\frac{y-2x}{4-\left(2\cdot5\right)}=\frac{-5}{-6}=\frac{5}{6}\)
suy ra: \(\frac{x}{5}=\frac{5}{6}\Rightarrow x=\frac{5\cdot5}{6}=\frac{25}{6}\)
\(\frac{y}{4}=\frac{5}{6}\Rightarrow y=\frac{5\cdot4}{6}=\frac{20}{6}=\frac{10}{3}\)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
7x -5y=0 (2)
x-y=18 => x=18+y (1)
Thay (1) vào (2) ta có:
7(18+y) - 5y =0
<=> 126 + 7y -5y =0
<=> 2y= -126
<=> y= -63
Vậy x= 18-63= -45
7x = 5y => \(\dfrac{x}{5}=\dfrac{y}{7}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x-y}{5-7}\) = \(\dfrac{18}{-2}\) = -9
x = -9 . 5 = -45
y = -9.7 = -63
vậy (x; y) =( -45; -63)
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
Bài làm:
Ta có: \(4x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{4}=\frac{x+y}{5+4}=\frac{18}{9}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=2\\\frac{y}{4}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=8\end{cases}}\)
\(\hept{\begin{cases}4x=5y\\x+y=18\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{5}}\\x+y=18\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{5}}=\frac{x+y}{\frac{1}{4}+\frac{1}{5}}=\frac{18}{\frac{9}{20}}=40\)
\(\Rightarrow\hept{\begin{cases}x=40\cdot\frac{1}{4}=10\\y=40\cdot\frac{1}{5}=8\end{cases}}\)