Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x-1\right)^2-25=0\)
⇔ \(\left(2x-1\right)^2-5^2=0\)
⇔ \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
⇒ \(2x-1-5=0\) hoặc \(2x-1+5=0\)
⇔ \(x=3\) hoặc \(x=-2\)
Bài 1: Tìm x
a) (2x-1) ² - 25 = 0
<=> (2x-1)2 = 25
<=> 2x-1 = 5 hay 2x-1 =-5
<=> 2x= 6 hay 2x=-4
<=> x=3 hay x= -2
Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0
<=> (x-1)(3x+1)=0
<=> x-1=0 hay 3x+1=0
<=> x=1 hay 3x=-1
<=> x=1 hay x=\(\dfrac{-1}{3}\)
Vậy S={1;\(\dfrac{-1}{3}\)}
c) 2(x+3) - x ² - 3x = 0
<=> 2(x+3)- x(x+3)=0
<=> (x+3)(2-x)=0
<=> x+3=0 hay 2-x=0
<=> x=-3 hay x=2
Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0
<=> x(x-2)+3(x-2)=0
<=> (x-2)(x+3)=0
<=> x-2=0 hay x+3=0
<=> x=2 hay x=-3
Vậy S={2;-3}
e) 4x ² - 4x +1 = 0
<=> (2x-1)2=0
<=> 2x-1=0
<=> 2x=1
<=> x=\(\dfrac{1}{2}\)
Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2 = 0
<=> x(1+5x)=0
<=>x=0 hay 1+5x=0
<=> x=0 hay 5x=-1
<=> x=0 hay x= \(\dfrac{-1}{5}\)
Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0
<=> x2-x+3x-3=0
<=> x(x-1)+3(x-1)=0
<=> (x-1)(x+3)=0
<=> x-1=0 hay x+3=0
<=> x=1 hay x=-3
Vậy S={1;-3}
Bài 2:
a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
=>-13x=26
hay x=-2
b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)
c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
hay \(x\in\left\{-5;2\right\}\)
a) \(\left(x+2\right)^3-x^2\left(x+6\right)=0\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3-6x^2=0\)
\(\Leftrightarrow12x+8=0\)
\(\Leftrightarrow12x=-8\)
\(\Leftrightarrow x=-\dfrac{8}{12}\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
b) \(\left(2x+3\right)^3-8x\left(x+1\right)\left(x-1\right)=9x\left(4x-3\right)\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x\left(x^2-1\right)=36x^2-27x\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x^3+8x=36x^2-27x\)
\(\Leftrightarrow8x^3-8x^3+36x^2-36x^2+54x+27x+8x+27=0\)
\(\Leftrightarrow89x+27=0\)
\(\Leftrightarrow x=-\dfrac{27}{89}\)
c) \(\left(2-x\right)^3+\left(2+x\right)^3-12x\left(x+1\right)=0\)
\(\Leftrightarrow8-12x+6x^2-x^3+8+12x+6x^2+x^3-12x^2-12x=0\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(6x^2+6x^2-12x^2\right)-\left(12x-12x\right)+12x+\left(8+8\right)=0\)
\(\Leftrightarrow12x+16=0\)
\(\Leftrightarrow x=-\dfrac{16}{12}\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
`#040911`
`a)`
`(x + 2)^3 - x^2(x + 6) = 0`
`<=> x^3 + 6x^2 + 12x + 8 - x^3 - 6x^2 = 0`
`<=> (x^3 - x^3) + (6x^2 - 6x^2) + 12x = 0`
`<=> 12x = 0`
`<=> x = 0`
Vậy, `x = 0.`
`b)`
`(2x + 3)^3 - 8x(x - 1)(x + 1) = 9x(4x - 3)`
`<=> 8x^3 + 36x^2 + 54x + 27 - 8x(x^2 - 1) = 36x^2 - 27x`
`<=> 8x^3 + 36x^2 + 54x + 27 - 8x^3 + 8x - 36x^2 + 27x = 0`
`<=> (8x^3 - 8x^3) + (36x^2 - 36x^2) + (54x + 8x + 27x) + 27 = 0`
`<=> 89x + 27 = 0`
`<=> 89x = -27`
`<=> x = -27/89`
Vậy, `x = -27/89`
`c)`
`(2 - x)^3 + (2 + x)^3 - 12x(x + 1) = 0`
`<=> 8 - 12x + 6x^2 - x^3 + 8 + 12x + 6x^2 + x^3 - 12x^2 - 12x = 0`
`<=> (-x^3 + x^3) + (12x - 12x - 12x) + (6x^2 + 6x^2 - 12x^2) + (8 + 8)=0`
`<=> -12x + 16 = 0`
`<=> -12x = -16`
`<=> 12x = 16`
`<=> x=4/3`
Vậy, `x = 4/3.`
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
\(a,\Leftrightarrow x^2+6x+9-x^2+3x+10=1\\ \Leftrightarrow9x=-18\Leftrightarrow x=-2\\ b,\Leftrightarrow4x^2-4x+1-4x^2+17x+15=3\\ \Leftrightarrow13x=-13\Leftrightarrow x=-1\\ c,\Leftrightarrow3x\left(x-2\right)+4\left(x-2\right)=0\\ \Leftrightarrow\left(3x+4\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=2\end{matrix}\right.\\ d,\Leftrightarrow2x\left(3x+5\right)-6\left(3x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Bài 2:
a: 4x(x-3)+6(3-x)=0
=>4x(x-3)-6(x-3)=0
=>(x-3)(4x-6)=0
=>\(\left[{}\begin{matrix}x-3=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{3}{2}\end{matrix}\right.\)
b: \(x^3-x\left(x+1\right)\left(x-1\right)=14\)
=>\(x^3-x\left(x^2-1\right)=14\)
=>\(x^3-x^3+x=14\)
=>x=14
c: \(\left(x^2-x\right)^2+2\left(x^2-x\right)=8\)
=>\(\left(x^2-x\right)^2+2\left(x^2-x\right)-8=0\)
=>\(\left(x^2-x\right)^2+4\left(x^2-x\right)-2\left(x^2-x\right)-8=0\)
=>\(\left(x^2-x\right)\left(x^2-x+4\right)-2\left(x^2-x+4\right)=0\)
=>\(\left(x^2-x+4\right)\left(x^2-x-2\right)=0\)
=>\(\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}\right)\left(x-2\right)\left(x+1\right)=0\)
=>\(\left(x-2\right)\left(x+1\right)=0\)
=>\(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)