K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

Bài 2:

a: 4x(x-3)+6(3-x)=0

=>4x(x-3)-6(x-3)=0

=>(x-3)(4x-6)=0

=>\(\left[{}\begin{matrix}x-3=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{3}{2}\end{matrix}\right.\)

b: \(x^3-x\left(x+1\right)\left(x-1\right)=14\)

=>\(x^3-x\left(x^2-1\right)=14\)

=>\(x^3-x^3+x=14\)

=>x=14

c: \(\left(x^2-x\right)^2+2\left(x^2-x\right)=8\)

=>\(\left(x^2-x\right)^2+2\left(x^2-x\right)-8=0\)

=>\(\left(x^2-x\right)^2+4\left(x^2-x\right)-2\left(x^2-x\right)-8=0\)

=>\(\left(x^2-x\right)\left(x^2-x+4\right)-2\left(x^2-x+4\right)=0\)

=>\(\left(x^2-x+4\right)\left(x^2-x-2\right)=0\)

=>\(\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}\right)\left(x-2\right)\left(x+1\right)=0\)

=>\(\left(x-2\right)\left(x+1\right)=0\)

=>\(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

 

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)

\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)

\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)

\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

29 tháng 6 2017

thu gọn hết sẽ thấy sự giống nhau

NV
10 tháng 3 2023

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)

\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

22 tháng 7 2016

Nhiều thế ai làm đượcucche

22 tháng 7 2016

mờ quá

 

29 tháng 10 2016

đăng ít 1 thôi

30 tháng 10 2016

1. 8 - 12x + 6x2 - x3

= 23 - 3.22.x + 3.x2.2 - x3

=(2-x)3

2. 125x3 - 75x2 +15x - 1

=(5x)3 - 3.(5x)2.1 + 3.5x.12 - 13

=(5x - 1)3

3, 4 (sai đề)

5. x3 + 2x2 - 6x - 27

=(x3 - 27) + (2x2 - 6x)

=(x3 - 33) + (2x2 - 6x)

=(x -3)(x2 + 3x + 9) + 2x(x-3)

=(x-3)(x2 + 3x +9 +2x)

=(x-3)(x2 + 5x +9)

6. 12x3 + 4x2- 27x -9

=(12x3 + 4x2) - (27x + 9)

=4x2(3x + 1) - 9(3x +1)

=(3x -1)(4x2 -9)

=(3x-1)(2x-3)(2x+3)

 

19 tháng 12 2023

Ta có

\(BC\perp AB';B'C'\perp AB'\) => BC//B'C'

\(\Rightarrow\dfrac{AB}{AB'}=\dfrac{BC}{B'C'}\Rightarrow\dfrac{x}{x+h}=\dfrac{a}{a'}\)

\(\Rightarrow a'x=ax+ah\Rightarrow x\left(a'-a\right)=ah\Rightarrow x=\dfrac{ah}{a'-a}\left(dpcm\right)\)

30 tháng 9 2024

Xét tam giác ABCABC có BC⊥ AB′BC AB và B′C′⊥AB′BCAB nên suy ra BCBC // B′C′BC.

Theo hệ quả định lí Thalès, ta có: ABAB′ =BCBC′ABAB =BCBC

Suy ra xx+h =aa′x+hx =aa

a′.x=a(x+h)a.x=a(x+h)

a′.x−ax=aha.xax=ah

x(a′−a)=ahx(aa)=ah

x=aha′ −ax=a aah.

18 tháng 7 2017

Bài 1:

\(a,\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^2\left(x^2-1\right)\)

\(b,\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)

\(=x^6+27-27-27x^2-9x^4-x^6\)

\(=-9x^2\left(3-x^2\right)\)

18 tháng 7 2017

Bài 5:

\(A=x^2-2x+1\)

\(=\left(x^2-2x+1\right)-2\)

\(=\left(x-1\right)^2-2\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-2\ge-2\)

Vậy Min A = -2

Để A = -2 thì \(x-1=0\Rightarrow x=1\)

b, \(B=4x^2+4x+5\)

\(=\left(4x^2+4x+1\right)+4\)

\(=\left(2x+1\right)^2+4\)

Với mọi giá trị của x ta có:

\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)

Vậy Min B = 4

Để B = 4 thì \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

c, \(C=2x-x^2-4\)

\(=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-3\le-3\)Vậy Max C = -3

để C = -3 thì \(x-1=0\Rightarrow x=1\)

14 tháng 7 2017

a, 4x.(x - 2017 ) - x + 2017 = 0

\(\Leftrightarrow\) 4x ( x - 2017 ) - ( x - 2017 ) = 0

\(\Leftrightarrow\) ( x - 2017 ) ( 4x - 1 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy phương trình có nghiệm x = 2017 hoặc x = \(\dfrac{1}{4}\) .

14 tháng 7 2017

b) \(\left(x+1\right)^2=x+1\)

\(\left(x+1\right)^2-\left(x+1\right)=0\)

\(\left(x+1\right)\left(x+1-x-1\right)=0\)

\(x+1=0\)

x = -1

c) \(x\left(x-5\right)-\left(4x-20\right)=0\)

\(x\left(x-5\right)-4\left(x-5\right)=0\)

\(\left(x-5\right)\left(x-4\right)=0\)

\(\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

22 tháng 9 2017

Sao bạn không tự làm bớt đi , bài dễ mà