K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

Chỗ kí hiệu : sai r`, sao lại vt là chia hết cho 7, trong khi đg cần tìm số dư

Có: \(20\equiv-1\left(mod7\right)\Rightarrow20^{11}\equiv\left(-1\right)^{11}=-1\left(mod7\right)\left(1\right)\)

\(22\equiv1\left(mod7\right)\Rightarrow22^{12}\equiv1\left(mod7\right)\left(2\right)\)

\(1996\equiv1\left(mod7\right)\Rightarrow1996^{1997}\equiv1\left(mod7\right)\left(3\right)\)

Từ (1); (2) và (3) \(\Rightarrow A=20^{11}+22^{12}+1996^{1997}\equiv-1+1+1=1\left(mod7\right)\)

Vậy số dư khi chia A cho 7 là 1

5 tháng 2 2019

Diện tích xung quanh của căn phòng đó là:

(10,5 + 5) x 2 x 4 = 124 (m2)

Diện tích trần nhà của căn phòng đó là:

10,5 x 5 = 52,5 (m2)

Diện tích cửa ra vào là:

0,8 x 2,1 = 1,68 (m2)

Diện tích 2 cửa sổ là:

1,2 x 1,5 x 2 = 3,6 (m2)

Diện tích được sơn của căn phòng đó là:

124 + 52,5 - 1,68 - 3,6 = 171,22 (m2)

Sơn căn phòng đó hết số tiền công là:

171,22 x 18000 = 3081960 (đồng)

                            Đ/S: 3081960 đồng

Chúc bạn học tốt !!!

9 tháng 6 2016

Ta có : 

\(A=20^{11}+22^{12}+1996^{2009}\equiv\left(-1\right)^{11}+1^{12}+1^{2009}=1\left(mod7\right)\)

Vậy A chia cho 7 dư 1.

16 tháng 3 2019

Câu a:

TH1 : $n = 3k$

thì $2^n - 1 = 2^{3k} - 1 = 8^k - 1 = (8-1)A = 7A$ chia hết cho $7$

TH2 : $n = 3k+1$

thì $2^n - 1 = 2^{3k+1} - 1 = 2\cdot 8^{k} - 1 = 2(8^k - 1) + 1 = 2\cdot (8-1)A + 1 = 2\cdot 7A + 1$ chia $7$ dư $1$ nên $2^n-1$ không chia hết cho $7$

TH3 : $n = 3k+2$

thì $2^n - 1 = 2^{3k+2} - 1 = 4\cdot 8^k - 1 = 4(8^k - 1) + 3 = 4\cdot (8 - 1)A + 3 = 4\cdot 7A + 3$ chia $7$ dư $3$ nên $2^n-1$ không chia hết cho $7$

Vậy với mọi $n \in \mathbb{Z^+}$ chia hết cho $3$ thì $2^n-1$ chia hết cho $7$

-Nguyễn Thành Trương-

16 tháng 3 2019

Câu 1b)

+ Với n = 2 ⇒ 3^2−1=8 chia hết cho 8
+ Giả sử với n = k ( k > 1) thì 3^k−1 cũng chia hết cho 8
+ Ta phải chức minh với n = k + 1 thì 3^n − 1 cũng chia hết cho 8 3^n−1=3^k+1−1=3.3^k−1=3.3^k−3=8=3(3^k−1)+8
Ta có 3^k−1 chia hết cho 8
⇒3(3^k−1)chia hết cho 8; 8 chia hết cho 8
=> 3^k+1−1 chia hết cho 8
Kết luận 3^n−1 chia hết cho 8 với n∈N

20 tháng 11 2016

đéo ai tl đâu cưng

20 tháng 11 2016

tao biết làm rồi

d=251