K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

Ta tính bằng cách tách các số hạng (từ trái sang) lần lượt 9 chữ số :

Tách số đã cho thành các phần : a = 123456789

b = 098765 (giữ nguyên chữ số 0 ở đầu)

c = 4321

Khi đó ta tính : a = 123456 * 1000 + 789

gắn 789 liền trước số b được :

789098765 = 6391*123456 + 91469

Tiếp tục gắn 91469 liền trước số c được :

914694321 = 7409 * 123456 + 8817

Số dư cuối cùng chính là 8817 , còn thương sẽ là phần nối của thương trong từng lần chia , tức là 100063917409

 

21 tháng 11 2016

Chỗ kí hiệu : sai r`, sao lại vt là chia hết cho 7, trong khi đg cần tìm số dư

Có: \(20\equiv-1\left(mod7\right)\Rightarrow20^{11}\equiv\left(-1\right)^{11}=-1\left(mod7\right)\left(1\right)\)

\(22\equiv1\left(mod7\right)\Rightarrow22^{12}\equiv1\left(mod7\right)\left(2\right)\)

\(1996\equiv1\left(mod7\right)\Rightarrow1996^{1997}\equiv1\left(mod7\right)\left(3\right)\)

Từ (1); (2) và (3) \(\Rightarrow A=20^{11}+22^{12}+1996^{1997}\equiv-1+1+1=1\left(mod7\right)\)

Vậy số dư khi chia A cho 7 là 1

4 tháng 7 2019

Bài 1:

a) \(M=x^2+x+1\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4};\forall x\)

Hay \(M\ge\frac{3}{4};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\)

                         \(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(MIN\)\(M=\frac{3}{4}\)\(\Leftrightarrow x=\frac{-1}{2}\)

b) \(N=3-2x-x^2\)

\(=-x^2-2x+3\)

\(=-\left(x^2+2x+1\right)+4\)

\(=-\left(x+1\right)^2+4\)

Vì \(-\left(x+1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+1\right)^2+4\le0+4;\forall x\)

Hay \(N\le4;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\)

                        \(\Leftrightarrow x=-1\)

Vậy MAX \(N=4\)\(\Leftrightarrow x=-1\)

Bài 2:

Vì a chia 3 dư 1 nên a có dạng \(3k+1\left(k\in N\right)\)

Vì b chia 3 dư 2 nên b có dạng \(3t+2\left(t\in N\right)\)

Ta có: \(ab=\left(3k+1\right)\left(3t+2\right)\)

\(=\left(3k+1\right).3t+\left(3k+1\right).2\)

\(=9kt+3t+6k+2\)

\(=3.\left(3kt+t+2k\right)+2\)chia 3 dư 2 .

\(\)

4 tháng 7 2019

1a) Ta có: M = x2 + x + 1 = (x2 + x + 1/4)  + 3/4 = (x + 1/2)2  + 3/4

Ta luôn có: (x + 1/2)2 \(\ge\)\(\forall\)x

=> (x + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x

Dấu "=" xảy ra khi : x + 1/2 = 0 <=> x = -1/2

Vậy Mmin = 3/4 tại x = -1/2

b) Ta có: N = 3 - 2x - x2 = -(x2 + 2x + 1) + 4 = -(x + 1)2 + 4

Ta luôn có: -(x + 1)2 \(\le\)\(\forall\)x

=> -(x + 1)2 + 4 \(\le\)\(\forall\)x

Dấu "=" xảy ra khi : x + 1 = 0 <=> x = -1

Vậy Nmax = 4 tại x = -1