Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
Vì \(\left(x-2\right)^2\ge0\forall x\)
Nên : \(A=\left(x-2\right)^2-4\ge-4\forall x\)
Vậy \(A_{min}=-4\) khi x = 2
B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)
B2:
a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)
\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)
b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)
B3:
Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x = 2
Vậy GTNN của A = -4 khi x = 2
Bài 1:
Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$
Vậy gtnn của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
Bài 2:
$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)
\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)
nhìu dữ
a)3/2
b)-1/3
c)-5/6
d)0
e)-1/2
Bài 2
a=3
b=1/2
c=-1/3
d=0
e=9
f=-2/3
1,
a,
Ta có:
|x-2,1|=3/2
TH1: x-2,1=3/2
=> x=-3/5
TH2: 2,1-x=3/2
=> x=3/5
b, (x + 5) . (2x - 3) = 0
=> \(\orbr{\begin{cases}x+5=0\\2x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{3}{2}\end{cases}}\)
2,
a, A = 2 . | 2 - 5x | - 4/6
b, B = | x - 1/2 | + | y - 3/4 | - 1,5
Giải:
a,
Ta có: \(\left|\text{ 2-5x}\right|\ge0\Rightarrow2.\left|2-5x\right|\ge0\)
\(\Rightarrow2.\left|2-5x\right|-\frac{4}{6}\ge-\frac{4}{6}\)
Dấu '=' xảy ra khi 2.|2-5x|=0
=> \(x=\frac{2}{5}\)
Min A=-4/6 khi và chỉ khi x=2/5
b, B = | x - 1/2 | + | y - 3/4 | - 1,5
Tương tự Min B= -1,5 khi và chỉ khi x=... y=... tự giải
Câu 3:
a,
Ta có:
\(\frac{1}{2}.\left|5-x\right|\ge0\)
=> \(7-\frac{1}{2}\left|5-x\right|\le7\)
Dấu '=' xảy ra khi
|5-x|=0
=> x=5
câu b tương tự
Bài 1:
a, \(\dfrac{-x-2}{3}\) = - \(\dfrac{6}{7}\)
- \(x\) - 2 = - \(\dfrac{18}{7}\)
\(x\) = - 2 + \(\dfrac{18}{7}\)
\(x\) = - \(\dfrac{4}{7}\)
Bài b, \(\dfrac{4}{7-x}\) = \(\dfrac{1}{3}\)
12 = 7 - \(x\)
\(x\) = 7 - 12
\(x\) = -5
a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)
b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)
1) \(\dfrac{2}{3}\left(x-\dfrac{5}{6}\right)-\dfrac{1}{5}\left(\dfrac{3}{4}-\dfrac{x}{2}\right)=1\)
\(\Rightarrow\dfrac{2}{3}x-\dfrac{5}{9}-\dfrac{3}{20}+\dfrac{x}{10}=1\)
\(\Rightarrow x\left(\dfrac{2}{3}+\dfrac{1}{10}\right)-\dfrac{127}{180}=1\)
\(\Rightarrow x\cdot\dfrac{23}{30}=1+\dfrac{127}{180}\)
\(\Rightarrow x\cdot\dfrac{23}{30}=\dfrac{307}{180}\)
\(\Rightarrow x=\dfrac{307}{180}:\dfrac{23}{30}\)
\(\Rightarrow x=\dfrac{307}{138}\)
2) \(\left(\left|x\right|-\dfrac{1}{3}\right)\left(\left|x\right|+2\right)=0\)
TH1: \(\left|x\right|-\dfrac{1}{3}=0\)
\(\Rightarrow\left|x\right|=\dfrac{1}{3}\)
\(\Rightarrow x=\pm\dfrac{1}{3}\)
TH2: \(\left|x\right|+2=0\)
\(\Rightarrow\left|x\right|=-2\) (vô lý)