K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

5 tháng 5 2017

Bài 2: câu hỏi tương tự: Câu hỏi của Đỗ Thanh Huyền - Toán lớp 8 | Học trực tuyến

9 tháng 2 2018

A A B B C C M M D D E E F F N N F' F'

a) Em tham khảo tại đây.

b) Trên tia đối tia FD, lấy điểm F' sao cho FF' = DE

Theo câu a ta có DF' = 2AM   (1)

Lại có tứ giác ANDM có AN // DM, AM // DN nên ANDM là hình bình hành.

Vậy nên AM = ND (2)

Từ (1) và (2) suy ra NF' = ND

Lại có F'F = DE nên FN = EN hay N là trung điểm EF.

c) Ta có \(S^2_{FDC}\ge16S_{AMC}.S_{FNA}\Leftrightarrow\frac{S_{AMC}}{S_{FDC}}.\frac{S_{FNA}}{S_{FDC}}\le\frac{1}{16}\)

Ta thấy \(\frac{S_{AMC}}{S_{FDC}}=\left(\frac{MC}{DC}\right)^2;\frac{S_{FNA}}{S_{FDC}}=\left(\frac{AF}{FC}\right)^2\)

nên ta cần chứng minh \(\frac{MC}{DC}.\frac{AF}{FC}\le\frac{1}{4}\Rightarrow\frac{MC}{DC}.\left(1-\frac{AC}{FC}\right)\le\frac{1}{4}\)

\(\Rightarrow\frac{MC}{DC}.\left(1-\frac{MC}{DC}\right)\le\frac{1}{4}\)

Đặt \(\frac{MC}{DC}=x\Rightarrow x\left(1-x\right)=-x^2+x=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)

Vậy ta đã chứng minh xong.

bạn chỉ mk cach viết phần trăm vs

Bài 1: (4,0 điểm). Cho biểu thức a) Rút gọn biểu thức P.b) Tìm x để .c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.Bài 2: (4,5 điểm). a) Giải phương trình : .b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .Bài 3: (4,0 điểm). a) Tìm tất cả các cặp số nguyên (x; y) thỏa...
Đọc tiếp

Bài 1: (4,0 điểm). Cho biểu thức 
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm). 
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm). 
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc  30. 
Bài 4: (6,0 điểm). 
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất 
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng 

(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2

 

2
8 tháng 4 2016

Bạn tự giải luôn đi!

8 tháng 4 2016

dài quá, ko muốn giải

11 tháng 6 2015

mình đc 4a à

(a+b+c)(1/a+1/b+1/c)=1+a/b+a/c+b/a+1+b/c+c/a+c/b+1=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)

mà a/b+b/a>=2(BĐT cosi)

cmtt ta đc

3+2+2+2>=9

Vậy(a+b+c)(1/a+1/b+1/c)>=9

7 tháng 3 2017

2) a) \(\frac{x^2-5x+1}{2x+1}+2=-\frac{x^2-4x+1}{x+1}\) (ĐKXĐ: \(x\ne-\frac{1}{2};-1\))

+) x = \(-\frac{2}{3}\), thay vào đề không TM

+ x\(\ne-\frac{2}{3}\)

Từ đề \(\Rightarrow\frac{x^2-5x+1+4x+2}{2x+1}=\frac{-x^2+4x-1}{x+1}\)

\(\Leftrightarrow\frac{x^2-x+3}{2x+1}=\frac{-x^2+4x-1}{x+1}=\frac{\left(x^2-x+3\right)+\left(-x^2+4x-1\right)}{\left(2x+1\right)+\left(x+1\right)}\) \(=\frac{3x+2}{3x+2}=1\)

\(\Rightarrow x^2-x+3=2x+1\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow\left[\begin{matrix}x-\frac{3}{2}=\frac{1}{2}\\x-\frac{3}{2}=-\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Vậy ...

7 tháng 3 2017

chỗ x = -2/3 sửa thành có TM

NV
27 tháng 12 2022

1.

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{a}{2a+a+b+c}=\dfrac{a}{25}.\dfrac{\left(2+3\right)^2}{2a+a+b+c}\le\dfrac{a}{25}\left(\dfrac{2^2}{2a}+\dfrac{3^2}{a+b+c}\right)=\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{a}{a+b+c}\)

Tương tự:

\(\dfrac{b}{3b+a+c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{b}{a+b+c}\)

\(\dfrac{c}{a+b+3c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{c}{a+b+c}\)

Cộng vế:

\(VT\le\dfrac{6}{25}+\dfrac{9}{25}.\dfrac{a+b+c}{a+b+c}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
27 tháng 12 2022

2.

Đặt \(\dfrac{x}{x-1}=a;\dfrac{y}{y-1}=b;\dfrac{z}{z-1}=c\)

Ta có: \(\dfrac{x}{x-1}=a\Rightarrow x=ax-a\Rightarrow a=x\left(a-1\right)\Rightarrow x=\dfrac{a}{a-1}\)

Tương tự ta có: \(y=\dfrac{b}{b-1}\) ; \(z=\dfrac{c}{c-1}\)

Biến đổi giả thiết:

\(xyz=1\Rightarrow\dfrac{abc}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=1\)

\(\Rightarrow abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(\Rightarrow ab+bc+ca=a+b+c-1\)

BĐT cần chứng minh trở thành:

\(a^2+b^2+c^2\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(a+b+c-1\right)\ge1\)

\(\Leftrightarrow\left(a+b+c-1\right)^2\ge0\) (luôn đúng)

26 tháng 1 2017

Giúp mình với, mình cần gấp !!!!!!!!!!!! Thanks các bạn nhìu!

27 tháng 2 2021

a) undefined

b) ta có MD là tia phân giác của \(\widehat{AMB}\), ME là tia phân giác của \(\widehat{AMC}\)

=> \(\widehat{AMD}=\widehat{DMB}=\dfrac{1}{2}\widehat{AMB}\) và \(\widehat{AME}=\widehat{EMC}=\dfrac{1}{2}\widehat{AMC}\)

=> \(\widehat{AME}+\widehat{AMD}=\dfrac{\widehat{AMC}+\widehat{AMB}}{2}=\dfrac{180^o}{2}=90^o\)

Ta có \(\widehat{EMC}=\widehat{MED}\)(do ED//BC)

mà \(\widehat{EMC}=\widehat{EMI}\)

=> \(\widehat{EMI}=\widehat{MEI}\)=> tam giác EIM cân tại I

=> EI=IM

cmtt : IM=ID

=> EI=IM=MD

=> IM = \(\dfrac{1}{2}\left(EI+ID\right)=\dfrac{1}{2}ED\)(ĐPCM)