K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

a, N = \(\frac{5n+7}{2n+1}\) với n \(\ne\) \(\frac{-1}{2}\) và n \(\in\) Z

Phân số tối giản có dạng \(\frac{1}{x}\) với x \(\ne\) 0

\(\Rightarrow\) 5n + 7 = 1

\(\Rightarrow\) n = \(\frac{-1}{7}\)

Vậy n = \(\frac{-1}{7}\) thì phân số trên tối giản

b, \(\frac{5-2n}{4n+5}\) với n = \(\frac{-5}{4}\) và n \(\in\) Z

Phân số tối giản có dạng \(\frac{1}{x}\) với x \(\ne\) 0

\(\Rightarrow\) 5 - 2n = 1

\(\Rightarrow\) n = \(\frac{5}{2}\)

Vậy n = \(\frac{5}{2}\) thì phân số trên tối giản

Chúc bn học tốt

15 tháng 4 2020

Mình nghĩ là còn nhiều n nữa nhưng nếu chỉ tìm mỗi n thôi thì đáp án mình đúng (còn nhiều n vì có rất nhiều số nguyên tố nên vô số n để phân số đó tối giản) Nguyễn Thu Huyền

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

31 tháng 5

           Bài 1:

a; A = \(\dfrac{2n+1}{2n+2}\) (n \(\in\) N)

Gọi ước chung lớn nhất của 2n + 1 và 2n + 2 là d

Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)

    ⇒ 2n + 2  - 2n - 1 ⋮ d

      (2n - 2n) + (2 - 1) ⋮ d

                                1 ⋮ d

    d = 1

Vậy ước chung lớn nhất của 2n + 1 và 2n + 2 là 1

Hay A = \(\dfrac{2n+1}{2n+2}\) là phân số tối giản với mọi giá trị của số tự nhiên n.

 

31 tháng 5

          Bài 1b

  B = \(\dfrac{2n+3}{3n+5}\) (n \(\in\) N)

Gọi ước chung lớn nhất của 2n + 3 và 3n + 5 là d ta có:

\(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\left\{{}\begin{matrix}3.\left(2n+3\right)⋮d\\2.\left(3n+5\right)⋮d\end{matrix}\right.\)

\(\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

6n + 10 - 6n - 9 ⋮ d

(6n - 6n) + (10 - 9) ⋮ d

                         1 ⋮ d

         d = 1

Ước chung lớn nhất của 2n + 3 và 3n + 5 là 1

Hay B = \(\dfrac{2n+3}{3n+5}\) là phân số tổi giản với mọi số tự nhiên n

 

 

 

 

 

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha

21 tháng 3 2020

Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Đặt UCLN(2n+7, 5n+2)=d

=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)

5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)

Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)

=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)

Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)

Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)