K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2023

Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:

a + b = 66 (1)
GCD(a, b) = 6 (2)

Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.

Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:

a = 5m
b = 6n

Trong đó m và n là các số tự nhiên.

Thay vào (1), ta có:

5m + 6n = 66

Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.

Thử m = 1, ta có:

5 + 6n = 66
6n = 61
n ≈ 10.17

Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.

Thử m = 2, ta có:

10 + 6n = 66
6n = 56
n ≈ 9.33

Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.

Thử m = 3, ta có:

15 + 6n = 66
6n = 51
n ≈ 8.5

Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.

Thử m = 4, ta có:

20 + 6n = 66
6n = 46
n ≈ 7.67

Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.

Thử m = 5, ta có:

25 + 6n = 66
6n = 41
n ≈ 6.83

Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.

Thử m = 6, ta có:

30 + 6n = 66
6n = 36
n = 6

Với m = 6 và n = 6, ta có:

a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36

Vậy, hai số tự nhiên cần tìm là 30 và 36.

Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:

a - b = 84 (1)
UCLN(a, b) = 12 (2)

Ta có thể viết lại a và b dưới dạng:

a = 12m
b = 12n

Trong đó m và n là các số tự nhiên.

Thay vào (1), ta có:

12m - 12n = 84

Chia cả hai vế của phương trình cho 12, ta có:

m - n = 7 (3)

Từ (2) và (3), ta có hệ phương trình:

m - n = 7
m + n = 12

Giải hệ phương trình này, ta có:

m = 9
n = 3

Thay m và n vào a và b, ta có:

a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36

Vậy, hai số tự nhiên cần tìm là 108 và 36.

5 tháng 8 2023

1) \(a+b=66;UCLN\left(a;b\right)=6\)

\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)

mà có 1 số chia hết cho 5

\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)

Vậy 2 số đó là 30 và 36 thỏa đề bài

2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)

\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)

Vậy 2 số đó là 48 và 36 thỏa đề bài

11 tháng 9 2020

con dien :C

11 tháng 9 2020

+) Cách tính số tam giác biết số đường thẳng: Giả sử cho n đường thẳng, điều kiện là cứ 2 đường cho đúng 1 giao điểm

---> Cứ 3 đường thẳng cho 1 tam giác---> Số tam giác: \(\frac{\left(n-2\right)\left(n-1\right)n}{6}\)

Bài 1/ Vì 2 số cần tìm có ƯCLN là 6 nên ta đặt chúng là 6a và 6b

Vì 2 số đó không còn ước chung nào lớn hơn 6 nên ƯCLN(a,b)=1

Xét \(6a+6b=84\Rightarrow a+b=14\)mà (a,b)=1

\(\Rightarrow\left(a,b\right)=\left(1;13\right),\left(3;11\right),\left(5;9\right),\left(9;5\right),\left(11;3\right),\left(13;1\right)\)

---> Nhân 6 hết lên là ra kết quả cuối cùng.

Bài 2/ Tương tự bài 1 đặt 2 số càn tìm là \(a=16x\)và \(b=16y\)với (x,y)=1

Có \(ab=BCNN\left(a,b\right).ƯCLN\left(a,b\right)\Rightarrow16x.16y=240.16\Rightarrow xy=15\)

\(\Rightarrow\left(x,y\right)=\left(1;15\right),\left(3;5\right),\left(5;3\right),\left(15,1\right)\)--->Nhân 16 hết lên là xong

Bài 3/ Cũng tương tự mấy bài trên đặt \(a=16x\),\(b=16y\), với (x;y)=1

\(\Rightarrow6x.6y=216\Rightarrow xy=6\)

\(\Rightarrow\left(x,y\right)=\left(1;6\right),\left(2;3\right),\left(3;2\right),\left(6,1\right)\)---> Nhân 6 hết lên đi nha

Bài 4/ Tương tự phía trên \(ab=\left[a,b\right].\left(a,b\right)\Rightarrow\left(a,b\right)=\frac{ab}{\left[a,b\right]}=3\)

Vậy hiển nhiên là đặt \(a=3x,b=3y\)với (x,y)=1 roi.

\(\Rightarrow3x.3y=180\Rightarrow xy=20\)

\(\Rightarrow\left(x,y\right)=\left(1;20\right),\left(4;5\right),\left(5;4\right),\left(20,1\right)\)----> Nhân 3 hết lên mới được kết quả cuối cùng nha !!