Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xem lại câu hỏi
b/
Xét tg ABN và tg ABC có chung đường cao từ B->AC nên
\(\frac{S_{ABN}}{S_{ABC}}=\frac{AN}{AC}=\frac{1}{4}\Rightarrow S_{ABN}=\frac{S_{ABC}}{4}\)
Xét tg AMN và tg ABN có chung đường cao từ N->AB nên
\(\frac{S_{AMN}}{S_{ABN}}=\frac{AM}{AB}=\frac{1}{4}\Rightarrow S_{AMN}=\frac{S_{ABN}}{4}=\frac{\frac{S_{ABC}}{4}}{4}=\frac{S_{ABC}}{16}\Rightarrow\frac{S_{AMN}}{S_{ABC}}=\frac{1}{16}\)
c/
Xét tg ACM và tg ABC có chung đường cao từ C->AB nên
\(\frac{S_{ACM}}{S_{ABC}}=\frac{AM}{AB}=\frac{1}{4}\Rightarrow S_{ACM}=\frac{S_{ABC}}{4}\)
\(\Rightarrow S_{ABM}=S_{ACM}=\frac{S_{ABC}}{4}\)
\(\Rightarrow S_{AMN}+S_{BMN}=S_{AMN}+S_{CMN}\Rightarrow S_{BMN}=S_{CMN}\)
Hai tg BMN và tg CMN có chung MN nên đường cao từ B->MN = đường cao từ C->MN \(\Rightarrow BMNC\) là hình thang
\(\frac{AM}{AB}=\frac{1}{4}\Rightarrow\frac{AM}{BM}=\frac{1}{3}\)
Xét tg AMN và tg BMN có chung đường cao từ N->AB nên
\(\frac{S_{AMN}}{S_{BMN}}=\frac{AM}{BM}=\frac{1}{3}\) Hai tg này có chung MN nên
\(\frac{S_{AMN}}{S_{BMN}}=\)đường cao từ A->MN / đường cao từ B->MN \(=\frac{1}{3}\)
Xét tg AMK và tg BMK có chung MK nên
\(\frac{S_{AMK}}{S_{BMK}}=\)đường cao từ A->MN / đường cao từ B->MN \(=\frac{1}{3}\)
Xét tg BMK và tg EMK có chung cạnh MK và đường cao từ B->MN = đường cao từ E->MN
\(\Rightarrow S_{BMK}=S_{EMK}\)
\(\Rightarrow\frac{S_{AMK}}{S_{BMK}}=\frac{S_{AMK}}{S_{EMK}}=\frac{1}{3}\)
Hai tg AMK và tg EMK có chung đường cao từ M->AE nên
\(\frac{S_{AMK}}{S_{EMK}}=\frac{AK}{KE}=\frac{1}{3}\Rightarrow\frac{KE}{AK}=3\)
A B C D E 4cm
a) Xét \(\Delta AED\)và \(\Delta ABD\)có chung đường cao hạ từ D xuống cạnh đáy AB
Mà \(AE=\frac{2}{3}AB\Rightarrow S_{\Delta AED}=\frac{2}{3}S_{\Delta ABD}\)
\(\Rightarrow S_{\Delta ABD}=\frac{3}{2}S_{\Delta AED}=\frac{3}{2}\times4=6\left(cm^2\right)\)
Xét \(\Delta ABD\)và \(\Delta ABC\)có chung đường cao hạ từ B xuống cạnh đáy AC
Mà \(AD=\frac{1}{3}AC\Rightarrow S_{\Delta ABD}=\frac{1}{3}S_{\Delta ABC}\)
\(\Rightarrow S_{\Delta ABC}=3S_{\Delta ABD}=3\times6=18\left(cm^2\right)\)
Vậy ...
A B C D M
a) Ta có : Diện tích tam giác ACD = 1/2 Diện tích tam giác ABC ( vì chiều cao từ A xuống BC , đáy BD = DC )
=> Diện tích tam giác ACD là :
4 x 1/2 = 2 ( cm2 )
b) Ta lại có : Diện tích tam giác AMC = 1/3 Diện tích tam giác ADC ( vì chiều cao từ C xuống AD , đáy AM = 1/3 AD )
Vậy ta suy ra Tỉ số diện tích tam giác AMC vời diện tích tam giác ABC là :
1/3 x 1/2 = 1/6
Đáp số : ...
1, Vì Học kì 1 , khối 5 của trường có số h/s giỏi = 1/7 số h/s còn lại của khối
=> Học kì 1 , khối 5 của trường có số h/s giỏi bằng 1/7+1 hay 1/8 số h/s của khối
Vì Kì 2 , có thêm 8 h/s giỏi nên số h/s giỏi = 1/5 số h/s còn lại của khối
=> Kì 2 , số h/s giỏi = 1/5+1 hay 1/6 số h/s của khối
8 h/s giỏi ứng với
1/6 - 1/8 = 1/24 (h/s)
khối 5 của trường đó có :
8 : 1/24 = 192 (h/s)
A B C M N
a)
- Ta thấy : Đáy BM = \(\frac{1}{2}\)MC => Đáy BM = \(\frac{1}{3}\)Đáy BC .
=> SAMC = SABC . \(\frac{1}{3}\)= 36 . \(\frac{1}{3}\)= 12 ( m2 )
- Ta thấy : Cạnh CN = \(\frac{1}{3}\)Cạnh NA => Cạnh CN = \(\frac{1}{4}\)CA
=> SMNC = 12 . \(\frac{1}{4}\)= 3 ( m2 )
- SABMN = SABC - SMNC = 36 - 3 = 32 ( cm2 )
b) Không rõ đề ...
Bạn Doraeiga ơi bn trả lời sai mất rồi. Cô mk chữa k đúng với đáp số của bạn.
Bài 2 b sai đề thì phải ???
Ta có : \(\sqrt{8abc}:\sqrt{abc}=65\)
=> \(\sqrt{8abc:abc}=65\)
=> 8abc : abc = 65x65
=> 8000 : abc + abc : abc = 4225
=> 8000 : abc + 1 = 4225
=> 8000 : abc = 4224
abc = 8000 : 4224 = \(\frac{125}{66}\)
Sai đề ???