Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a>2b+3\)
\(\Leftrightarrow\)\(4a>8b+12\)
\(\Leftrightarrow\)\(4a-5>8b+12-5\)
\(\Leftrightarrow\)\(4a-5>8b+7\) (đpcm)
a)ta có 5>3. để có bất đẳng thức cùng chiều 5b>3b ta phải nhân hai vế của bất phương trình 5>3 cho số dương. Vậy b là số dương
b)ta có -12<8 để có bất đẳng thức ngược chiều -12b>8b ta phải nhân hai vế của bất phương trình -12<8 cho số âm. vậy b âm
c)ta có -6=< 9 nên để có bất đẳng thức ngược chiều -6b>=9b ta phải nhân hai vế của bất phương trình -6=<9 cho số âm. vậy b âm
d) ta có 3=<15 để có bất đẳng thức cùng chiều 3b=<15b ta phải nhân hai vế của bất phương trình 3=<15 cho số dương. Vậy b là số dương
mình chưa học bài này nên cách giải không biết có đúng không nhưng kết quả chắc đúng
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
1)/x-3/=9-2x
/x-3/=\(\hept{\begin{cases}x-3khix>3\\3-xkhix< 3\end{cases}}\)
TH1:x>3 phương trình là
x-3=9-2x
<=> x+2x=9+3
<=> 3x =12
<=> x =4 (thỏa mãn)
TH2:x<3 phương trình là
3-x=9-2x
<=>-x+2x=9-3
<=>x =6(không thỏa mãn-loại)
Vậy tập nghiệm của phương trình là S={4}
a) áp dụng bđt cô si cho 2 số ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)
⇔ \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (đpcm )
b) áp dụng bđt cô si dạng phân số ta có
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)
⇔ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (đpcm)
a) \(a>b\Rightarrow3a>3b\Rightarrow-3a<-3b\)
b) \(m-5>m-7\)
c) Gọi phân số cần tìm là \(\frac{a}{a+3}\)
Ta có \(\frac{a+2}{a+5}=\frac{1}{2}\Rightarrow2a+4=a+5\Rightarrow2a-a=5-4\Rightarrow a=1\)
Vậy phân số cần tìm là \(\frac{1}{4}\)