Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tìm số nguyên a để \(\frac{a^2+a+3}{a+1}\)là số nguyên.
b, Tìm số nguyên x,y sao cho \(x-2xy+y=0\)
a, \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=1+\frac{3}{a+1}\)
Để \(\frac{a^2+a+3}{a+1}\inℤ\) thì \(a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta có bảng:
a+1 | 1 | -1 | 3 | -3 |
a | 0 | -2 | 2 | -4 |
Vậy....
b, x - 2xy + y = 0
<=> 2x - 4xy + 2y = 0
<=> 2x(1 - 2y) + 2y - 1 = -1
<=> 2x(1 - 2y) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = -1
ta có bảng:
2x-1 | 1 | -1 |
1-2y | -1 | 1 |
x | 1 | 0 |
y | 1 | 0 |
Vậy...
a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)
\(\Rightarrow3⋮a+1\)
\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)
b) Phần 1
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy+2y=0\)
\(\Rightarrow2x-4xy+2y-1=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Lập bảng xét Ư(-1)={1;-1}
Phần 2:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)
+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)
Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy P có giá trị nguyên
b) x - 2xy + y = 0
<=> 2x - 4xy + 2y = 0
<=> 2x - 4xy + 2y - 1 = -1
<=> (2x - 4xy) - (1 - 2y) = -1
<=> 2x(1 - 2y) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = - 1
<=> 2x - 1 = -1 và 1 - 2y = 1
hoặc 2x - 1 = 1 và 1 - 2y = -1
1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất.
mà \(\left|x-2016\right|+2018\ge2018\)
Dấu \(=\)khi \(x=2016\).
Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).
2) \(x-2xy+y=0\)
\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).
a, để phân số trên là số nguyên thì a^2+a+3 chia hết cho a+1
Mà a^2+a = a.(a+1) chia hết cho a+1
=> 3 chia hết cho a+1
=> a+1 thuộc ước của (3) = {+-1;+-3}
Đến đó bạn tự giải
b, => 2x-4xy+2y = 0
=> (2x-4xy)-(1-2y)+1 = 0
=> 2x.(1-2y)-(1-2y) = -1
=> (2x-1).(1-2y) = -1
Đến đó bạn dùng ước bội mà giải nha !
a) Ta có \(\frac{a^2+a+3}{a+1}\)là số nguyên hay \(a^2+a+3⋮a+1\)
\(a.\left(a+1\right)+3⋮a+1\Rightarrow3⋮a+1\)
Do đó a + 1 thuộc ước của 3
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow a+1\in\left\{1;-1;3;-3\right\}\Rightarrow a\in\left\{0;-2;2;-4\right\}\)
Vậy....
b)Ta có \(x-2xy+y=0\)
\(\Rightarrow x.\left(1-2y\right)+y=0\Rightarrow x.\left(1-2y\right)-0,5.\left(1-2y\right)+0,5=0\)
... đến đây tịt , nếu giải tiếp thì sẽ ra ước của 0,5