K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

b) x - 2xy + y = 0 

<=> 2x - 4xy + 2y = 0 

<=> 2x - 4xy + 2y - 1 = -1 

<=> (2x - 4xy) - (1 - 2y) = -1 

<=> 2x(1 - 2y) - (1 - 2y) = -1 

<=> (2x - 1)(1 - 2y) = - 1 

<=> 2x - 1 = -1 và 1 - 2y = 1 

hoặc 2x - 1 = 1 và 1 - 2y = -1

24 tháng 6 2016

a)\(\frac{x-1}{5}=\frac{3}{y+4}\Rightarrow\left(x-1\right)\left(y+4\right)=15\)

=>x-1 và y+4 thuộc Ư(15)={±1;±3;±5;±15}

Tới đây bn tự xét nhé nó hơi dài nên mk ngại làm

b)Để P thuộc Z

=>x-2 chia hết x+1

=>x+1-3 chia hết x+1

=>3 chia hết x+1

=>x+1 thuộc Ư(3)={1;-1;3;-3}

=>x thuộc {0;-2;2;-4}

11 tháng 3 2018

a, \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=1+\frac{3}{a+1}\)

Để \(\frac{a^2+a+3}{a+1}\inℤ\) thì \(a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

Ta có bảng:

a+11-13-3
a0-22-4

Vậy....

b, x - 2xy + y = 0

<=> 2x - 4xy + 2y = 0

<=> 2x(1 - 2y) + 2y - 1 = -1

<=> 2x(1 - 2y) - (1 - 2y) = -1

<=> (2x - 1)(1 - 2y) = -1

ta có bảng:

2x-11-1
1-2y-11
x10
y10

Vậy...

10 tháng 3 2018

a, để phân số trên là số nguyên thì a^2+a+3 chia hết cho a+1

Mà a^2+a = a.(a+1) chia hết cho a+1

=> 3 chia hết cho a+1

=> a+1 thuộc ước của (3) = {+-1;+-3}

Đến đó bạn tự giải

b, => 2x-4xy+2y = 0

=> (2x-4xy)-(1-2y)+1 = 0

=> 2x.(1-2y)-(1-2y) = -1

=> (2x-1).(1-2y) = -1

Đến đó bạn dùng ước bội mà giải nha !

10 tháng 3 2018

a) Ta có \(\frac{a^2+a+3}{a+1}\)là số nguyên hay \(a^2+a+3⋮a+1\)

\(a.\left(a+1\right)+3⋮a+1\Rightarrow3⋮a+1\)

Do đó a + 1 thuộc ước của 3

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a+1\in\left\{1;-1;3;-3\right\}\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

Vậy....

b)Ta có \(x-2xy+y=0\)

\(\Rightarrow x.\left(1-2y\right)+y=0\Rightarrow x.\left(1-2y\right)-0,5.\left(1-2y\right)+0,5=0\)

... đến đây tịt , nếu giải tiếp thì sẽ ra ước của 0,5 

23 tháng 12 2016

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên 

14 tháng 2 2018

Ta có số nguyên âm lớn nhất là -1 => y = -1

Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:

\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)\(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)\(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)

\(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)\(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)\(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)\(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)\(\frac{-37}{8}\left(\frac{-4}{3}\right)\)\(\frac{37}{6}\)

Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)