K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

=>2x^2-3x+2x-3-3x+6=2x^2-4x+2

=>-4x+3=-4x+2

=>0x=-1(loại)

Bài 4:

=>x^3-x+2x+2=0

=>x(x-1)(x+1)+2*(x+1)=0

=>(x+1)(x^2-x+2)=0

=>x+1=0

=>x=-1

2 tháng 2 2024

Ta có: DE//AC (cùng vuông góc với AB) 

Áp dụng định lý Ta-lét ta có:

\(\dfrac{BD}{AD}=\dfrac{BE}{CE}\Rightarrow\dfrac{BD}{AD}=\dfrac{BE}{BC-BE}\Rightarrow\dfrac{6}{x}=\dfrac{3x}{13,5-3x}\)

\(\Leftrightarrow6\left(13,5-3x\right)=x\cdot3x\)

\(\Leftrightarrow81-18x=3x^2\)

\(\Leftrightarrow27-6x=x^2\)

\(\Leftrightarrow x^2+6x-27=0\)

\(\Leftrightarrow x^2-3x+9x-27=0\)

\(\Leftrightarrow x\left(x-3\right)+9\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-9\left(ktm\right)\end{matrix}\right.\)

Vậy: `x=3` 

a: Xét tứ giác DIHK có

góc DIH=góc DKH=góc KDI=90 độ

nên DIHK là hình chữ nhật

b: Xét tứ giác IHAK có

IH//AK

IH=AK

Do đó: IHAK là hình bình hành

=>B là trung điểm chung của IA và HK

Xét ΔIKA có IC/IK=IB/IA

nên BC//KA

Xét ΔIDA có IB/IA=IM/ID

nên BM//DA

=>B,C,M thẳng hàng

x-2-1012
y41014

 

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y\)

4

1

0

1

4

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Xét tứ giác ABCD có:

\(\begin{array}{l} \widehat A  + \widehat  B + \widehat C  + \widehat  D  = {360^0}\\{85^0} + x + {65^0} + {75^0} = {360^0}\\x = {360^0} - {85^0} - {65^0} - {75^0} = {135^0}\end{array}\)

3
11 tháng 12 2023

Đề này khó quá cô, đợi em suy nghĩ rồi e giải nha cô!

11 tháng 12 2023

Trường em còn chưa học đến một số kiến thức trong này.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Trong Hình 4.23 có \(\widehat {DME} = \widehat {MEF}\) nên EM là tia phân giác của \(\widehat {{\rm{DEF}}}\).

Áp dụng tính chất đường phân giác của tam giác, ta có:

\(\dfrac{{E{\rm{D}}}}{{EF}} = \dfrac{{M{\rm{D}}}}{{MF}}\) hay \(\dfrac{{4,5}}{x} = \dfrac{{3,5}}{{5,6}}\)

Suy ra: \(x = \dfrac{{5,6.4,5}}{{3,5}} = 7,2\)(đvđd)

Vậy x = 7,2 (đvđd).

11 tháng 9 2023

Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Trong Hình 4.30 có \(\widehat {DEM} = \widehat {EMN}\) mà hai góc này ở vị trí so le trong nên MN // DE.

Áp dụng định lí Thalès vào tam giác DEF có MN // DE, ta có:

\(\dfrac{{MF}}{{M{\rm{D}}}} = \dfrac{{NF}}{{NE}}\) hay \(\dfrac{2}{3} = \dfrac{x}{6}\)

Suy ra \(x = \dfrac{{2.6}}{3} = 4\) (đvđd).

Vậy x = 4 (đvđd).

30 tháng 8 2017

Câu 1:

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Thay \(a+b+c=0\) vào biểu thức ta được:

\(a^3+b^3+c^3-3abc=0\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow a^3+b^3=3abc\left(đpcm\right)\)

Vậy \(a^3+b^3=3abc\) khi \(a+b+c=0\)

30 tháng 8 2017

Câu 3:

\(\text{a) }x^2+x+1\\ =x^2+2\cdot\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left[x^2+2\cdot\dfrac{1}{2}x+\left(\dfrac{1}{4}\right)^2\right]+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ \text{Ta có : }\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ \text{ Vậy biểu thức luôn nhận giá trị dương}\text{ }\forall x\\ \)

\(\text{b) }2x^2+2x+1\\ =2x^2+2x+\dfrac{1}{2}+\dfrac{1}{2}\\ =2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}\\ =2\left[x^2+2\cdot\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{1}{2}\\ =2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\\ \text{Ta có: }2\left(x+\dfrac{1}{2}\right)^2\forall x\\ 2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\forall x\\ \text{Vậy giá trị của biểu thức luôn nhận giá trị dương }\forall x\\ \)