K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

11 tháng 11 2021

a. Vì tam giác ABC có trung tuyến BM (gt)

-> M là trung điểm AC

Vì D đối xứng với B qua M (gt)

-> M là trung điểm BD

xét tứ giác ABCD có : - M là trung điểm AC (cmt)

                                    - M là trung điểm BD (cmt)

=> tứ giác ABCD là hình bình hành

b)  Vì tam giác ABC có trung tuyến CN(gt)

-> N là trung điểm AB

Vì E đối xứng với C qua N (gt)

-> N là trung điểm EC

xét tứ giác AEBC có : - N là trung điểm AB (cmt)

                                    - N là trung điểm EC (cmt)

-> tứ giác AEBC là hình bình hành

=> AE // BC ( tính chất )

c)Vì tứ giác ABCD là hình bình hành ( cmt )

-> AD = BC (tính chất) (1)

Vì tứ giác AEBC là hình bình hành ( cmt )

-> AE = BC (2)

từ (1) và (2) => AE = AD 

=> A là trung điểm ED 

=> E đối xứng vói D qua A

15 tháng 11 2021

a, Vì N là trung điểm BD và AC nên ABCD là hbh

Vì M là trung điểm CE và AB nên AEBC là hbh

b, Vì ABCD và AEBC là hbh nên \(\left\{{}\begin{matrix}AE//BC;AE=BC\\AD//BC;AD=BC\end{matrix}\right.\Rightarrow AE\equiv AD;AE=AD\)

Vậy E đx D qua A

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

b: Xét tứ giác AEBC có

N là trung điểm chung của AB và EC

nên AEBC là hình bình hành

=>AE//BC và AE=BC

=>AD//AE và AD=AE
=>A là trung điểm của DE

18 tháng 3 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét tứ giác ABCD, ta có:

MA = MC (gt)

MB = MD (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ AD // BC và AD = BC (1)

* Xét tứ giác ACBE, ta có:

AN = NB (gt)

NC = NE (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ACBE là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) ⇒ AE // BC và AE = BC (2)

Từ (1) và (2) suy ra: A, D, E thẳng hàng và AD = AE

Nên A là trung điểm của DE hay điểm D đối xứng với điểm E qua điểm A.

3 tháng 10 2021

xét tam giác ADE có:

AB=DB( gt)

AC=EC (gt)

=> BC//DE ( t/c đường trung bình)

ta có: BC//DE (CMT)

AM vuông góc với BC

AM=IM

=> góc AID= góc AIE

Xét tam giác AEI và tam giác ADIcó:

góc DAI= góc EAI

AI chung 

góc AID= góc AIE (CMT)

=> tam giác  AEI = tam giác ADI (g.c.g)

=> DI=EI(2 cạnh tương ứng)

11 tháng 9 2017

a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )

b. D là điểm đối xứng với B qua M =>BM=MD

Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường 

=> ABCD là HBH

c. E đối xứng với A qua N => AN=NE

ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )

10 tháng 12 2021

a: Xét tứ giác AEBM có 

D là trung điểm của AB

D là trung điểm của EM

Do đó: AEBM là hình bình hành

6 tháng 11 2021

a, Vì M là trung điểm AC và BE nên ABCE là hbh

b, Vì ABCE là hbh nên AE//BC;AE=BC(1)

Vì N là trung điểm AB và CF nên ACBF là hbh

Do đó AF//BC;AF=BC(2)

Từ (1)(2) ta được AE trùng AF và AE=AF

Vậy E đx F qua A

a: Xét tứ giác ABCE có 

M là trung điểm của AC

M là trung điểm của BE

Do đó: ABCE là hình bình hành

5 tháng 7 2021

Xét tứ giác ABCD có 

AM=CM; BM=DM => ABCD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AD//=BC

Xét ứ giác ACBE có

AN=BN; CN=EN => ACBE  là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AE//=BC

=> AD=AE =BC

=> AE trùng AD hay A; D; E thẳng hàng (Qua 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)

=> D đối xứng với E qua A