K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

1, (x+y+4). (x+y-4)=(x+y)2-42=(x+y)2-16

2, (x-y+6). (x+y-6)=(x+y)2-62=(x+y)2-36

3, (x+2y+3z). (2y+3z-x)=(2y+3z)2-x2

30 tháng 6 2017

\(1.\left[\left(x+y\right)-4\right]\left[\left(x+y\right)+4\right]=\left(x+y\right)^2-4^2\)

29 tháng 6 2017

a) \(x^2+10x+26+y^2+2y\)

= \(x^2+10x+25+y^2+2y+1\)

= \(\left(x+5\right)^2+\left(y+1\right)^2\)

b) \(x^2-2xy+2y^2+2y+1\)

= \(x^2-2xy+y^2+y^2+2y+1\)

= \(\left(x-y\right)^2+\left(y+1\right)^2\)

c) \(z^2-6z+5-t^2-4t\)

= \(z^2-6z+9-\left(t^2+4t+4\right)\)

= \(\left(z-3\right)^2-\left(t+2\right)^2\)

d) \(4x^2-12x-y^2+2y+1\)

Hình như câu này sai đề -_-

29 tháng 6 2017

a, \(x^2+10x+26+y^2+2y\)

\(=\left(x^2+2.x.5+5^2\right)+\left(1^2+2.1.y+y^2\right)\)

\(=\left(x+5\right)^2+\left(y+1\right)^2\)

b, \(x^2-2xy+2y^2+2y+1\)

\(=x^2-2xy+y^2+y^2+2y+1\)

\(=\left(x^2-2.x.y+y^2\right)+\left(y^2+2.y.1+1^2\right)\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

c,\(z^2 -6z+5-t^2-4t\)

\(=-\left(t^2+4t-z^2+6z-5\right)\)

\(=-\left(t^2+2.t.2+2^2-z^2+2.z.3-3^2\right)\)

\(=-\left(\left(t^2+2.t.2+2^2\right)-\left(z^2-2.z.3+3^2\right)\right)\)

\(=-\left(\left(t+2\right)^2-\left(z-3\right)^2\right)\)

\(=\left(z-3\right)^2-\left(t+2\right)^2\)

d, Không biết làm hihi :)

7 tháng 6 2017

a) (x+y+4).(x+y-4) = (x+y)-16

phần b với phần c mình chưa học nên biết có vậy

8 tháng 6 2017

a) (x + y + 4)(x + y - 4)
= [(x + y) + 4][(x + y) - 4]
= (x + y)2 - 42
= (x + y)2 - 16

b) Mình không biết có sai đề không nhưng mình không làm được câu này

c) (x + 2y + 3z)(2y + 3z - x)
= [(2y + 3z) + x][(2y + 3z) - x]
= (2y + 3z)2 - x2

31 tháng 7 2016

a) \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-4^2\)

b)\(\left(x-y+6\right)\left(x+y-6\right)=\left[x-\left(y-6\right)\right]\left(x+y-6\right)=x^2-\left(y-6\right)^2\)

31 tháng 7 2016

\(a,\left(x+y+4\right)\left(x+y-4\right)\)
\(=\left(x+y\right)^2-4^2\)
\(b,\left(x-y+6\right)\left(x+y-6\right)\)
\(=x^2-\left(y-6\right)^2\)

31 tháng 7 2016

\(\left(x+y+4\right)\left(x+y-4\right)\)

\(=\left(x+y\right)^2-4^2\)

\(\left(x-y+6\right)\left(x-y-6\right)\)

\(=\left(x-y\right)^2-6^2\)

29 tháng 6 2017

2. Viết hạng tử thích hợp vào dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.

a) \(25x^2+\cdot\cdot\cdot+81\)

\(=\left(5x\right)^2+...+9^2\)

\(=\left(5x\right)^2+2.5x.9+9^2\)

\(=25x^2+90x+81\)

b) \(64x^2-\cdot\cdot\cdot+9\)

\(=\left(8x\right)^2-\cdot\cdot\cdot+3^2\)

\(=\left(8x\right)^2-2.8x.3+3^2\)

\(=64x^2-48x+9\)

15 tháng 6 2021

a, \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-4^2\)

b, \(\left(y+2z-3\right)\left(y-2z-3\right)=\left(y-3+2z\right)\left(y-3-2z\right)=\left(y-3\right)^2-\left(2z\right)^2\)

c, \(\left(x-y-6\right)\left(x+y-6\right)=\left(x-6-y\right)\left(x-6+y\right)=\left(x-6\right)^2-y^2\)

d, \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z+x\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)

 

a . \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-4^2\)

b . \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)

c . \(\left(y+2z-3\right)\left(y-2z-3\right)=\left(y-3\right)^2-\left(2z\right)^2\)

d . \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)