K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

ta có : S > 3/14 + 3/14 + 3/14 + 3/14 + 3/14

S > 15/14 > 14/14 = 1

S < 3/10 + 3/10 + 3/10 + 3/10 + 3/10

S < 15/10 < 20/10 = 2

vậy 1 < S < 2

 

18 tháng 4 2018

mình biến đởi phần trong |......| rồi bạn thay vào nha

1/30 + 1/42 + 1/56 + 1/72 +1/ 90 + 1/110 + 1/132

=1/5.6  +  1/6.7  +  1/7.8  +  1/8.9  + 1/9.10  +1/ 10.11

=1/5 -1/6 +1/6 - 1/7 +......+1/10 - 1/11

=1/5 - 1/11=11/55 - 5/55 =6/ 55

thay vào |....|=> |6/55 - x | = 2/3 => mở ra 2 trường hợp mà tính nha

chúc hok tốt

18 tháng 4 2018

=>(1/5.6+1/6.7+1/7.8+1/9.10+1/10.11+1/11.12)-x=2/3

=>(1/5-1/+1/6-1/7+...+1/11-1/12)-x=2/3

=>(1/5-1/12)-x=2/3

=>7/60-x=2/3

=>x=7/60-2/3

=>x=-11/20

29 tháng 6 2018

a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)

Nên x + 1 = 0 => x = -1

b) \(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)

\(\Leftrightarrow\frac{x+1}{14}+1+\frac{x+2}{13}+1=\frac{x+3}{12}+1+\frac{x+4}{11}+1\)

\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)

\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)

\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)

Vì \(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\ne0\)

Nên x  +15 = 0 => x = -15

29 tháng 6 2018

a,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)\)

\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)-\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)=0\)

\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Vì \(\frac{1}{10}>\frac{1}{13};\frac{1}{11}>\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}>\frac{1}{13}+\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)

\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

b, Bạn cộng thêm 1 vào \(\frac{x+1}{14};\frac{x+1}{13};\frac{x+1}{12};\frac{x+1}{11}\)Mội bên phân số 1 đơn vị rồi áp dụng như bài 1

2 tháng 8 2017

 mik ko chép lại đề, mik làm luôn: 

a)  x - \(\frac{31}{36}=\frac{-13}{38}\)

x = \(\frac{-13}{18}+\frac{31}{36}\)

\(x=\frac{5}{36}\)

b)\(2-x-\frac{3}{7}=\frac{9}{-21}\)

\(\frac{11}{7}-x=\frac{3}{7}\)

x = \(\frac{11}{7}-\frac{3}{7}\)

x = 8/7

c) x + 3/11 = 23/44

x = 23/44 - 3/11

x = 1/4

d) \(\frac{1}{12}-x=\frac{-11}{9}\)

x = \(\frac{1}{12}+\frac{11}{9}\)

x = 47/36

e) \(x-\frac{2}{3}=\frac{-17}{3}\)

x= -17/3 + 2/3

x = -5 

f) \(x-\frac{1}{2}=\frac{11}{4}.\frac{3}{11}\)

x - 1/2 = 3/4

x = 3/4 + 1/2 

x = 5/4

g) \(2x+\frac{3}{8}=\frac{-21}{32}.\frac{4}{7}\)

2x + 3/8 = -3 / 8

2x = -3/8 - 3/8 

2x = -9/8

x = -9/8.1/2 

x = -9/16

h) x - \(\frac{x}{3}=\frac{3}{57}.\frac{19}{12}\)

x  - \(\frac{x}{3}=\frac{1}{12}\)

x = \(\frac{1}{12}+\frac{x}{3}\)

x = \(\frac{1+4x}{12}\)

=> 12x = 1+4x

12x - 4x = 1

8x = 1

x = 1/8 

2 tháng 8 2017

Trả lời nhanh gọn lẹ nhé, mình k cho :)

12 tháng 4 2017

a)ta có:

\(\frac{3}{10}\)>\(\frac{3}{15}\)

\(\frac{3}{11}\)>\(\frac{3}{15}\)

...

\(\frac{3}{14}\)>\(\frac{3}{15}\)

Cộng từng vế của bất đẳng thức trên ta được:

\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)

Hay S>\(\frac{15}{15}\)=>S>1               (1)

ta có :

\(\frac{3}{11}\)<\(\frac{3}{10}\)

\(\frac{3}{12}\)<\(\frac{3}{10}\)

...

\(\frac{3}{14}\)<\(\frac{3}{10}\)

Cộng từng vế của bất đẳng thức trên ta được:

\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)

Hay S<\(\frac{15}{10}\)<\(\frac{20}{10}\)=2

Vậy S<2                    (2)

Theo câu 1 ta có : S>1

Theo câu 2 ta có :S<2

Vậy 1<S<2 

=>S ko phải số tự nhiên

18 tháng 3 2018

Ta có :

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)

\(\Rightarrow S< \frac{3.4}{10}\)

\(\Rightarrow S< \frac{6}{5}\)

Vì \(\frac{6}{5}< 2\)mà \(S< \frac{6}{5}\)nên \(S< 2\)( 1 )

Lại có :

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{14}>\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}\)

\(\Rightarrow S>\frac{3.4}{14}\)

\(\Rightarrow S>\frac{6}{7}\)

Vì \(S>\frac{6}{7}\)nên \(S\ge1\)( 2 )

Do đề bài cần chứng minh \(1< S< 2\)nên ta sẽ chọn trường hợp lớn hơn

\(\Rightarrow1< S< 2\)( ĐPCM )

Từ đó suy ra : \(S\notinℕ\)

1 tháng 6 2017

Bài 1: 

\(B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)\(=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{5}{6}\right)}+\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{8}\right)}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\) 

\(=\frac{1}{\frac{1}{2}}+3\)  \(=2+3\) \(=5\)

                                                  Vậy B=5

Bài 2:

a) x3 - 36x = 0  

=>  x(x2-36)=0

=>  x(x2+6x-6x-36)=0 

=> x[x(x+6)-6(x+6) ]=0

=> x(x+6)(x-6)=0

\(\Rightarrow\orbr{\begin{cases}^{x=0}x+6=0\\x-6=0\end{cases}}\)

 \(\Rightarrow\orbr{\begin{cases}^{x=0}x=-6\\x=6\end{cases}}\)

                                  Vậy x=0; x=-6; x=6

b)  (x - y = 4 => x=4+y)

 x−3y−2 =32  

=>2(x-3) = 3(y-2)

=>2x-6= 3y-6

=>2x-3y=0

=>2(4+y)-3y=0

=>8+2y-3y=0

=>8-y=0

=>y=8 (thỏa mãn)

Do đó x=4+y=4+8=12 (thỏa mãn)

         Vậy x=12 và y =8

1 tháng 6 2017

B= 1/2 + 3/4 - 5/6/1/2(1.2 + 3/4 - 5/6) + 3(1/4+ 1/5 - 1/8)/ 1/4  1/5 - 1/8 

B= 1/ 1/2 + 3

B= 2+3

B=5

B2:

a) x^3 - 36x = 0

x(x^2 - 36) = 0

=> x=0  hoặc x^2-36=0

=> x= 0 hoặc x^2=36

=> x=0 hoặc x= +- 6