\(S+\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)( S = nha bn mi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Ta có :

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)

\(\Rightarrow S< \frac{3.4}{10}\)

\(\Rightarrow S< \frac{6}{5}\)

Vì \(\frac{6}{5}< 2\)mà \(S< \frac{6}{5}\)nên \(S< 2\)( 1 )

Lại có :

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{14}>\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}\)

\(\Rightarrow S>\frac{3.4}{14}\)

\(\Rightarrow S>\frac{6}{7}\)

Vì \(S>\frac{6}{7}\)nên \(S\ge1\)( 2 )

Do đề bài cần chứng minh \(1< S< 2\)nên ta sẽ chọn trường hợp lớn hơn

\(\Rightarrow1< S< 2\)( ĐPCM )

Từ đó suy ra : \(S\notinℕ\)

12 tháng 4 2017

a)ta có:

\(\frac{3}{10}\)>\(\frac{3}{15}\)

\(\frac{3}{11}\)>\(\frac{3}{15}\)

...

\(\frac{3}{14}\)>\(\frac{3}{15}\)

Cộng từng vế của bất đẳng thức trên ta được:

\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)

Hay S>\(\frac{15}{15}\)=>S>1               (1)

ta có :

\(\frac{3}{11}\)<\(\frac{3}{10}\)

\(\frac{3}{12}\)<\(\frac{3}{10}\)

...

\(\frac{3}{14}\)<\(\frac{3}{10}\)

Cộng từng vế của bất đẳng thức trên ta được:

\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)

Hay S<\(\frac{15}{10}\)<\(\frac{20}{10}\)=2

Vậy S<2                    (2)

Theo câu 1 ta có : S>1

Theo câu 2 ta có :S<2

Vậy 1<S<2 

=>S ko phải số tự nhiên

5 tháng 6 2019

\(S>\frac{3}{15}+\frac{3}{15}+...\frac{3}{15}\left(5\right)số\frac{3}{15}\)

\(=\frac{15}{15}=1\)

\(S>\frac{3}{10}+...+\frac{3}{10}\left(5so\right)\)

\(=\frac{15}{10}< \frac{20}{10}=2\)

\(=>1< P< 2\)

Vậy P không phải là số tự nhiên.

5 tháng 6 2019

Ta có :S =  \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

\(3.\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)\)

\(3.\left(\frac{1}{14}+\frac{1}{14}+\frac{1}{14}+\frac{1}{14}+\frac{1}{14}\right)\)

\(3\left(\frac{1}{14}.5\right)\)

\(3.\frac{5}{14}\)

\(\frac{15}{14}\)> 1 

=> S > \(\frac{15}{14}\)>1

=> S > 1 (1)

Lại có : S = \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

\(3.\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)\)

\(3.\left(\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}\right)\)

\(3.\left(\frac{1}{10}.5\right)\)

\(3.\frac{1}{2}\)

\(\frac{3}{2}\)<2

=> S < \(\frac{3}{2}\)< 2

=> S < 2 (2)

Từ (1) và (2) ta có 

1 < S < 2

=> S không là số tự nhiên 

1 tháng 3 2016

s=1,2

=>1<s<2

21 tháng 3 2018

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

ta có :

\(\frac{3}{10}>\frac{3}{15}\)

\(\frac{3}{11}>\frac{3}{15}\)

\(\frac{3}{12}>\frac{3}{15}\)

\(\frac{3}{13}>\frac{3}{15}\)

\(\frac{3}{14}>\frac{3}{15}\)

nên \(S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)

\(\Rightarrow S>5\cdot\frac{3}{15}\)

\(\Rightarrow S>1\)    (1)

ta lại có :

\(\frac{3}{10}< \frac{3}{9}\)

\(\frac{3}{11}< \frac{3}{9}\)

\(\frac{3}{12}< \frac{3}{9}\)

\(\frac{3}{13}< \frac{3}{9}\)

\(\frac{3}{14}< \frac{3}{9}\)

nên \(S< \frac{3}{9}+\frac{3}{9}+\frac{3}{9}+\frac{3}{9}+\frac{3}{9}\)

\(\Rightarrow S< 5\cdot\frac{3}{9}\)

\(\Rightarrow S< \frac{15}{9}\)

\(\Rightarrow S< 1,66...< 2\) 

\(\Rightarrow S< 2\)    (2)

(1)(2) \(\Rightarrow1< S< 2\)

=> S không phải là số tự nhiên  (đpcm)

21 tháng 3 2018

a) Để B đạt giá trị nguyên thì

\(\Leftrightarrow10n⋮5n-3\)

\(\Rightarrow2\left(5n-3\right)+6⋮5n-3\)

\(\Rightarrow5n-3\inƯ\left(6\right)=\left\{-1;-2;-3;-6;1;2;3;6\right\}\)

Bạn lập bản ra làm tiếp nhé!

b) \(B=\frac{10n}{5n-3}=\frac{\left(10n-6\right)+6}{5n-3}=2+\frac{6}{5n-3}\)

\(\Rightarrow5n-3>0\)

\(\Rightarrow n>0\)và n=1

Thay n=1 ta có 5n-3=5*1-3=2

=>10n=10=>B=5

Vậy GTLN của B=5

Mik làm hơi tắt

                           

28 tháng 2 2016

* Ta có : \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)\)

Ta có : \(\frac{1}{10}>\frac{1}{15};\frac{1}{11}>\frac{1}{15};\frac{1}{12}>\frac{1}{15};\frac{1}{13}>\frac{1}{15};\frac{1}{14}>\frac{1}{15}\)

=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}>\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}=\frac{5}{15}=\frac{1}{3}\)

=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)>3.\frac{1}{3}=1\)

=> S >1     (1)

** Ta có : \(\frac{1}{11}<\frac{1}{10};\frac{1}{12}<\frac{1}{10};\frac{1}{13}<\frac{1}{10};\frac{1}{14}<\frac{1}{10}\)

=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}<\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{5}{10}=\frac{1}{2}\)

=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)<3.\frac{1}{2}=\frac{3}{2}<\frac{4}{2}=2\)

=> S < 2     (2)

Từ (1) và (2) => 1 < S < 2 (đpcm)

28 tháng 2 2016

Vì \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}<\frac{3}{10};\frac{3}{12}<\frac{3}{10};\frac{3}{13}<\frac{3}{10};\frac{3}{14}<\frac{3}{10}\)

\(\Rightarrow S<\frac{3}{10}.5\Rightarrow S<\frac{15}{10}\Rightarrow S<\frac{20}{10}\Rightarrow S<2\left(1\right)\)

Vì \(\frac{3}{10}>\frac{3}{14};\frac{3}{11}>\frac{3}{14};\frac{3}{12}>\frac{3}{14};\frac{3}{13}>\frac{3}{14};\frac{3}{14}=\frac{3}{14}\)

\(\Rightarrow S>\frac{3}{14}.5\Rightarrow S>\frac{15}{14}\Rightarrow S>1\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow1

=> S không phải là số tự nhiên

26 tháng 10 2019

Ta có : \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

                \(=3.\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)\)

                 \(>3.\left(\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+\frac{1}{15}\right)\)

                  \(=3.\frac{1}{3}=1\)

=> S > 1 (1)

Ta có : 

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

                \(=3.\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)\)

                \(< 3.\left(\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}\right)\)

                \(=3.\frac{1}{2}=\frac{3}{2}< \frac{4}{2}=2\)    

=> S < 2 (2)

Từ (1) và (2) => 1 < S < 2 (đpcm) 

3/10=3/9*10

3/11=3/10*11

3/12=3/11*12

3/13=3/12*13

3/14=3/13*14

suy ra 3/10+3/3/11+....+3/14 nhỏ hơn 3/9*10+....+3/13*14

suy ra 3/9*10 + 3/10*11+....+3/13*14

=1/9-1/10+....+1/13-1/14

=1/9-1/14

tự viết kết quả nhé

16 tháng 8 2015

ta có : S > 3/14 + 3/14 + 3/14 + 3/14 + 3/14

S > 15/14 > 14/14 = 1

S < 3/10 + 3/10 + 3/10 + 3/10 + 3/10

S < 15/10 < 20/10 = 2

vậy 1 < S < 2