K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

Đặt x/2 = y/3 = k ta có: x = 2k và y = 3k 
=> x.y = 2k.3k = 54 
> 6k² = 54 => k=-3 ; 3
=> x = 6; y = 9 hoặc x = -6; y = -9 

15 tháng 8 2016

Đặt\(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\frac{x}{2}.\frac{y}{3}=\frac{xy}{6}=\frac{54}{6}=9=k^2\Rightarrow k\in\left\{3;-3\right\}\)

Khi \(k=3\) thì:\(\frac{x}{2}=3\Rightarrow x=6;\frac{y}{3}=3\Rightarrow y=9\)

Khi \(k=-3\)thì: \(\frac{x}{2}=-3\Rightarrow x=-6;\frac{y}{3}=-3\Rightarrow y=-9\)

9 tháng 10 2016

Đặt x/2 = y/3 = k => x= 2k ; y = 3k (1)

Thay (1) vào tích trên đề bài.

Tìm ra k 

Rồi tìm x, y theo k

10 tháng 10 2016

bài hoc ve t/c cua ty le thuc ta co

x/2 = y/3 = k ( k là he so ty le)

x = 2k; y = 3k

xy = 2k.3k = 6k = 54 => k = 3

x = 6; y = 9

( hoc bai nay cac bn phai tim dc hs k thi cac ẩn x;y;z.....deu tim dc)

10 tháng 10 2018

Đặt \(\frac{x}{2}=\frac{y}{3}=k\left(k\inℚ\right)\)

=>\(\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)

ta có xy=54

(=) 2k.3k=54

(=) \(6.k^2\)=54

(=) \(k^2=9\)

=> k=3

=> \(\hept{\begin{cases}x=2.3\\y=3.3\end{cases}\left(=\right)\hept{\begin{cases}x=6\\y=9\end{cases}}}\)

10 tháng 10 2018

Đặt : \(\frac{x}{2}=\frac{y}{3}=k\)

\(\Rightarrow x=2k;y=3k\)

Khi đó : \(2k.3k=54\)

\(\Rightarrow6k^2=54\)

\(\Rightarrow k^2=54:6=9=3^2\)

\(\Rightarrow k=3\)hoặc \(k=-3\)

\(\Rightarrow x=2.3=6\)\(;y=3.3=9\)hoặc

\(x=2.\left(-3\right)=-6\)\(;y=3.\left(-3\right)=-9\)

29 tháng 10 2016

1.\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\hept{\begin{cases}\frac{x}{2}.\frac{y}{3}=\frac{54}{6}=9\\\frac{x}{2}.\frac{y}{3}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2\end{cases}\Rightarrow\left(\frac{x}{2}\right)^2}=\left(\frac{y}{3}\right)^2=9\Rightarrow\orbr{\begin{cases}\frac{x}{2}=\frac{y}{3}=3\\\frac{x}{2}=\frac{y}{3}=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=6;y=9\\x=-6;y=-9\end{cases}}}\)

2.\(x:y:z=3:8:5\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x}{9}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.8=16\\z=2.5=10\end{cases}}\)

a: \(A=\dfrac{4}{9}x^4y^2\cdot\dfrac{3}{2}x^2yz=\dfrac{2}{3}x^6y^3z\)

Hệ số; biến;bậc lần lượt là 2/3; x^6y^3z;10

b: \(B=\dfrac{-2}{3}\cdot\dfrac{1}{2}\cdot\left(-1\right)\cdot xy^2\cdot xy^3\cdot x^2y^2=\dfrac{1}{3}x^4y^7\)

Hệ số;biến;bậc lần lượt là 1/3;x^4y^7;11

c: \(C=\left(-\dfrac{8}{9}x^3y^4\right)^2\cdot x^6y^3=\dfrac{64}{81}x^6y^8\cdot x^6y^3=\dfrac{64}{81}x^{12}y^{11}\)

Hệ số;biến;bậc lần lượt là 64/81; x^12y^11; 23

Bài 4:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)

\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)

Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)

Bài 2:

a: x:y=4:7

=>\(\dfrac{x}{4}=\dfrac{y}{7}\)

mà x+y=44

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)

=>\(x=4\cdot4=16;y=4\cdot7=28\)

b: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)

=>\(x=4\cdot2=8;y=4\cdot5=20\)

Bài 3:

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)

=>x=5k; y=4k; z=3k

\(M=\dfrac{x+2y-3z}{x-2y+3z}\)

\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)

\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)

23 tháng 1

bài 1 đâu hả bạn