K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2021

a) \(=\left(6x\right)^2-2.6x.1+1=\left(6x-1\right)^2\)

b) \(=5xy\left(x^2+2x+1\right)=5xy\left(x+1\right)^2\)

c) \(=\left(3x-y\right)^2-25=\left(3x-y-5\right)\left(3x-y+5\right)\)

d) \(=x\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)

23 tháng 11 2021

a, 7x - 14

= 7(x-2)

b, 2x - 2y + \(x^2\)- xy 

= (2x-2y) + (\(x^2\)-xy)

= 2(x-y) + x(x-y)

= (x-y)(2+x)

c, 6x + 12

= 6(x+2)

 

23 tháng 11 2021

\(a,=7\left(x-2\right)\\ b,=2\left(x-y\right)+x\left(x-y\right)=\left(x+2\right)\left(x-y\right)\\ c,=6\left(x+2\right)\\ d,\text{Sai đề}\)

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

7 tháng 12 2021

a) 7x – 14 = 7(x - 2)

b) 5x3 - 10x2y +5xy2 = 5x(x2 - 2xy - y2) = 5x(x - y)2

c) 25 – x2= (x - 5)(x + 5)

7 tháng 12 2021

a, \(7\left(x-2\right)\)

c, \(\left(5-x\right)\left(5+x\right)\)

7 tháng 12 2021

a, 7x - 14 = 7 ( x - 2 )

b, 5x3 - 10x2y + 5xy2 

= 5x ( x2 - 2xy + y2 ) 

= 5x ( x - y )2

c, 25 - x2 = 52 - x2 = ( 5 - x ) ( 5 + x )

23 tháng 10 2023

Bài 1:
\(\left(x^2-y\right)\left(3x+y^2\right)-\left(6x^4y-2xy^4\right):2xy\)

\(=3x\cdot x^2+y^2\cdot x^2-y\cdot3x-y\cdot y^2-6x^4y:2xy+2xy^4:2xy\)

\(=3x^3+x^2y^2-3xy-y^3-3x^3+y^3\)

\(=x^2y^2-3xy\) 

Bài 2:

a) \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)

\(=10x^2\left(2x-y\right)-6xy\left(2x-y\right)\)

\(=2x\left(2x-y\right)\left(5x-3y\right)\)

b) \(x^2-2x+1-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-y-1\right)\left(x+y-1\right)\)

c) \(x^2-8x+12\)

\(=x^2-8x+16-4\)

\(=\left(x-4\right)^2-2^2\)

\(=\left(x-6\right)\left(x+2\right)\)

23 tháng 10 2023

ban ơi bài 2;

câu a) thì phải đặt nhân tử chung ở dòng cuối chứ. mik .. thắc mắc bucminh

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

18 tháng 7 2021

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

19 tháng 11

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15