Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 1 + 5 + 52 +....+ 521
5M = 5 + 52 + .... + 522
5M - M = 522 - 1
4M = 522 - 1
4M + 4 = 522 - 1 + 4
4M + 4 = 522 + 3
Ta có : M = 1 + 5 + 52 + 53 + ..... + 521
=> 5M = 5 + 52 + 53 + ..... + 522
=> 5M - M = 522 - 1
=> 4M = 522 - 1
=> 4M + 4 = 522 - 1 + 4
=> 4M + 4 = 522 + 3
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
c: \(C=5\cdot4^3+2^4\cdot5+41\)
\(=5\cdot64+16\cdot5+41\)
\(=320+80+41\)
\(=441=21^2\)
d) -4 . 2 . 6 . 25 . (-7) . 5
= (-4 . 25) . (-7 . 2 . 5 . 6)
= -100 . (-420)
= 42000
e) -41 . (59 + 2) + 59 . (41 - 2)
= -41 . 59 + (-41) . 2 + 59 . 41 - 59 . 2
= (-41 . 59 + 59 . 41) + (-41 . 2 - 59 . 2)
= [59 . (-41 + 41)] + [2 . (-41 - 59)]
= (59 . 0) + [2 . (-100)]
= 0 + (-200)
= -200
f) (-5) . (-4) - 33 + (-1)2017 . (-6)
= -5 . (-4) - 27 + (-1) . (-6)
= [-5 . (-4)] - 27 + [-1 . (-6)]
= 20 - 27 + 6
= -1
(59-5^30)-(59+3^3-5^30)
=[(59-5^30)-(59-5^30)]+3^3
=0+9
=9
`5`
`a, -7/21 +(1+1/3)`
`=-7/21 + ( 3/3 + 1/3)`
`=-7/21+ 4/3`
`=-7/21+ 28/21`
`= 21/21`
`=1`
`b, 2/15 + ( 5/9 + (-6)/9)`
`= 2/15 + (-1/9)`
`= 1/45`
`c, (9-1/5+3/12) +(-3/4)`
`= ( 45/5-1/5 + 3/12)+(-3/4)`
`= ( 44/5 + 3/12)+(-3/4)`
`= 9,05 +(-0,75)`
`=8,3`
`6`
`x+7/8 =13/12`
`=>x= 13/12 -7/8`
`=>x=5/24`
`-------`
`-(-6)/12 -x=9/48`
`=> 6/12 -x=9/48`
`=>x= 6/12-9/48`
`=>x=5/16`
`---------`
`x+4/6 =5/25 -(-7)/15`
`=>x+4/6 =1/5 + 7/15`
`=> x+ 4/6=10/15`
`=>x=10/15 -4/6`
`=>x=0`
`----------`
`x+4/5 = 6/20 -(-7)/3`
`=>x+4/5 = 6/20 +7/3`
`=>x+4/5 = 79/30`
`=>x=79/30 -4/5`
`=>x= 79/30-24/30`
`=>x= 55/30`
`=>x= 11/6`
\(5)\)
\(A=\dfrac{-7}{21}+\left(1+\dfrac{1}{3}\right)\)
\(A=\dfrac{-7}{21}+\dfrac{4}{3}\)
\(A=\dfrac{-7}{21}+\dfrac{28}{21}\)
\(A=1\)
\(--------------\)
\(B=\dfrac{2}{15}+\left(\dfrac{5}{9}+\dfrac{-6}{9}\right)\)
\(B=\dfrac{2}{15}+\dfrac{-1}{9}\)
\(B=\dfrac{18}{135}+\dfrac{-15}{135}\)
\(B=\dfrac{1}{45}\)
\(------------\)
\(C=9-\dfrac{1}{5}+\dfrac{3}{12}+\dfrac{-3}{4}\)
\(C=\dfrac{44}{5}+\dfrac{3}{12}+\dfrac{-3}{4}\)
\(C=\dfrac{528}{60}+\dfrac{15}{60}+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-15}{20}\)
\(C=\dfrac{83}{10}\)
\(6)\)
\(a)\) \(x+\dfrac{7}{8}=\dfrac{13}{12}\)
\(x=\dfrac{13}{12}-\dfrac{7}{8}\)
\(x=\dfrac{104}{96}-\dfrac{84}{96}\)
\(x=\dfrac{5}{24}\)
\(b)\) \(\dfrac{-6}{12}-x=\dfrac{9}{48}\)
\(\dfrac{-1}{2}-x=\dfrac{3}{16}\)
\(x=\dfrac{-1}{2}-\dfrac{3}{16}\)
\(x=\dfrac{-8}{16}-\dfrac{3}{16}\)
\(x=\dfrac{-11}{16}\)
\(c)\) \(x+\dfrac{4}{6}=\dfrac{5}{25}-\left(-\dfrac{7}{15}\right)\)
\(x+\dfrac{4}{6}=\dfrac{5}{25}+\dfrac{7}{15}\)
\(x+\dfrac{4}{6}=\dfrac{75}{375}+\dfrac{105}{375}\)
\(x+\dfrac{4}{6}=\dfrac{12}{25}\)
\(x=\dfrac{12}{25}-\dfrac{4}{6}\)
\(x=\dfrac{72}{150}-\dfrac{100}{150}\)
\(x=\dfrac{-14}{75}\)
\(d)\) \(x+\dfrac{4}{5}=\dfrac{6}{20}-\left(-\dfrac{7}{3}\right)\)
\(x+\dfrac{4}{5}=\dfrac{6}{20}+\dfrac{7}{3}\)
\(x+\dfrac{4}{5}=\dfrac{18}{60}+\dfrac{140}{60}\)
\(x+\dfrac{4}{5}=\dfrac{79}{30}\)
\(x=\dfrac{79}{30}-\dfrac{4}{5}\)
\(x=\dfrac{79}{30}-\dfrac{24}{30}\)
\(x=\dfrac{11}{6}\)
M = 5 + 52 + 53 + 54 + ... + 559 + 560
5.M = 52 + 53 + 54 + 55 + ... + 560 + 561
5M - M =(52 + 53 + 54 + .... + 560 + 561) - (5 + 52 + 53 + ... + 559 + 560)
4M = 52 + 53 + 54 + .... + 560 + 561 - 5 - 52 - 53 - ...- 559 - 560
4M = (52 - 52) + (53 - 53) + ....+ (560 - 560) + (561 - 5)
4M = 561 - 5
4M + 5 = 561 - 5 + 5
4M = 561