K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 1 2021

Lời giải:

PT $\Leftrightarrow (4x^2+y^2-4xy)+9y^2+12x+6y+13=0$

$\Leftrightarrow (2x-y)^2+6(2x-y)+9y^2+12y+13=0$

$\Leftrightarrow (2x-y)^2+6(2x-y)+9+(9y^2+12y+4)=0$

$\Leftrightarrow (2x-y+3)^2+(3y+2)^2=0$

$\Rightarrow (2x-y+3)^2=(3y+2)^2=0$

$\Rightarrow y=-\frac{2}{3}; x=\frac{-11}{6}$

7 tháng 6 2021

PT có 2 nghiệm

`<=>Delta'>=0`

`<=>4-m^2-1>=0`

`<=>3-m^2>=0`

`<=>m^2<=3`

`<=>-sqrt3<=m<=sqrt3`

Áp dụng vi-ét ta có:`x_1+x_2=4,x_1.x_2=m^2+1`

`3x_1=x_2=>x_1+x_2=4`

`<=>3x_1+x_1=4`

`<=>4x_1=4<=>x_1=1`

`<=>x_2=3`

Mà `m^2+1=x_1.x_2`

`=>m^2+1=3`

`=>m^2=2<=>m=+-sqrt2(tm)`

Vậy `m=+-sqrt2` thì..

28 tháng 1 2021

Đặt \(\dfrac{1}{x+1}\) = a; \(\dfrac{1}{y}\) = b (x \(\ne\) -1; y \(\ne\) 0)

Khi đó hpt trên tương đương:

\(\left\{{}\begin{matrix}a+b=\dfrac{-1}{2}\\8a+9b=-5\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}8a+8b=-4\\8a+9b=-5\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-b=1\\8a+9b=-5\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=-1\\8a+9\left(-1\right)=-5\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=-1\\8a=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=-1\\a=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{2}\\\dfrac{1}{y}=-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+1=2\\y=-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (TM)

Vậy hpt có nghiệm duy nhất (x; y) = (1; -1)

Chúc bn học tốt!

28 tháng 1 2021

ĐK:  ( x ≠ 1 ; y ≠ 0 ) 

Đặt a = \(\dfrac{1}{x+1} \) ; b = \(\dfrac{1}{y}\) . Ta có hệ phương trình 

\(\begin{cases} a + b = \dfrac{-1}{2}\\ 8a + 9b = -5 \end{cases} \)

\(\begin{cases} 8a + 8b = -4 \\ 8a + 9b = -5 \end{cases} \) ⇔ \(\begin{cases} -b = 1 \\ a + b = \dfrac{-1}{2} \end{cases} \) ⇔ \(\begin{cases} b = - 1 \\ a = \dfrac{1}{2} \end{cases} \)

=> \(​​​​\begin{cases} \dfrac{1}{y}=-1 \\\dfrac{1}{x+1}= \dfrac{1}{2} \end{cases} \) ⇔ \(\begin{cases} y = - 1\\ x = 1 \end{cases} \)

Vậy hpt có nghiệm duy nhất \(\begin{cases} y = - 1\\ x = 1 \end{cases} \)

NV
19 tháng 4 2021

\(\Delta'=\left(m+1\right)^2-\left(4m-1\right)=\left(m-1\right)^2+1>0\) ;\(\forall m\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=4m-1\end{matrix}\right.\)

Đặt \(A=-x_1^2-x_2^2=-\left(x_1+x_2\right)^2+2x_1x_2\)

\(A=-4\left(m+1\right)^2+2\left(4m-1\right)\)

\(A=-4m^2-6\le-6\)

\(A_{max}=-6\) khi \(m=0\)

26 tháng 8 2017

chiều dài là:

36x,5=54(m)

CHU VI LÀ:

(54+36)x2=180(m2)

26 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Ta có: \(\left\{{}\begin{matrix}3\left|x-1\right|+2\left(x-y\right)=4\\4\left|x-1\right|-\left(x-y\right)=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12\left|x-1\right|+8\left(x-y\right)=16\\12\left|x-1\right|-3\left(x-y\right)=27\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\left(x-y\right)=-11\\3\left|x-1\right|+2\left(x-y\right)=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\3\left|x-1\right|=4-2\left(x-y\right)=4-2\cdot\left(-1\right)=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\\left|x-1\right|=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=-1\\x-1=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x-1=-2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x+1=3+1=4\\x=3\end{matrix}\right.\\\left\{{}\begin{matrix}y=x+1=-1+1=0\\x=-1\end{matrix}\right.\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(3;4\right);\left(-1;0\right)\right\}\)

1 tháng 3 2021

a)

Khi m = 1, ta có:

{ x+2y=1+3   

  2x-3y=1

=> { x+2y=4

        2x-3y=1

=> { 2x+4y=8

        2x-3y=1

=> { x+2y=4

        2x-3y-2x-4y=1-8

=> { x=4-2y

       -7y = -7

=> { x = 2

        y = 1

Vậy khi m = 1 thì hệ phương trình có cặp nghệm

(x; y) = (2;1)

1 tháng 3 2021

a) Thay m=1 vào HPT ta có: 

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\7y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y)= (2;1)

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7y=7\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=4-2y=4-2=2\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(2;1)

b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2\left(m+3-2y\right)-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2m+6-4y-3y-m=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y+m+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y=-m-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2\cdot\dfrac{m+6}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-\dfrac{2m+12}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3 thì \(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=3\)

\(\Leftrightarrow6m+15=21\)

\(\Leftrightarrow6m=6\)

hay m=1

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3

1 tháng 3 2021

a/ Thay  \(m=1\) vào hpt ta có :

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy...

b/ Ta có :

\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{2\left(m+3\right)}{2y}-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{m+3}{y}-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\m-3y^2+3=my\end{matrix}\right.\)

 

 

NV
5 tháng 1 2021

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow x-\sqrt{x^2-1}+x+\sqrt{x^2-1}+2\sqrt{x^2-\left(x^2-1\right)}=4\)

\(\Leftrightarrow2x+2=4\)

\(\Leftrightarrow x=1\)