K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Giải khuyến khích                                                          `KK.PAS

Một vé số đạt  giải khuyến khích nếu các chữ số trên vé chỉ sai một số so với giải đặc biệt. Viết chương trình kiểm tra một số có đạt giải khuyễn khích không ?

Dữ liệu vào: dòng 1: ghi số n n có 10 chữ sô là số trúng giải đặc biệt;

dòng 2: ghi số m có 10 chữ số là số cần kiểm tra.

Dữ liệu ra: đếm và liệt kê ra các giải

 KK.INP                                                  KK.OUT

0912572627                                          1

0912252627                                          0812572627

0812572627                             

BÀI 2Trong quá trình học l p trình và thu t toán đa số trong chúng ta đã từng nghe tới và làm các bài t p về các số b b n friend numbers . ác số b b n n m là hai số nguyên mà tổng ước số của n bằng m và tổng các ước của m bằng n ví dụ như cặp số b b n nh nhất là 220 và 284. Yêu cầu: Tìm và viết ra tất cả các số b n b trong khoảng từ a đến b 0 < a; b < 108 ). Nếu không tìm thấy thì in ra kết quả 0.          bài 3:Người ta định nghĩa một số nguyên dương N được gọi là số đẹp nếu N thoả mãn một trong hai điều kiện sau: - N bằng 9 - Gọi f N là tổng các chữ số của N thì f N cũng là số đẹp ho số nguyên dương N N < = 10100 hãy kiểm tra xem N có phải là số đẹp không? Ví dụ : 36 là số đẹp Nếu N là số đẹp thì in ra “Yes”; không là số đẹp thì in “No”

0
Bài 4: Tìm số dư của phép chia cho 9. CHIA9.PAS Cho một số nguyên dương N có M chữ số. Yêu cầu: Tìm số dư của phép chia số N cho 9. Dữ liệu vào: Cho trong file văn bản CHIA9.INP, có cấu trúc như sau: - Dòng 1: Ghi số nguyên dương M là số lượng chữ số của số N (1 ≤ M ≤ 100). - Dòng 2: Ghi M chữ số của số N, các chữ số được ghi liền nhau. Dữ liệu ra: Ghi ra file văn bản CHIA9.OUT, theo cấu trúc như...
Đọc tiếp

Bài 4: Tìm số dư của phép chia cho 9. CHIA9.PAS Cho một số nguyên dương N có M chữ số. Yêu cầu: Tìm số dư của phép chia số N cho 9. Dữ liệu vào: Cho trong file văn bản CHIA9.INP, có cấu trúc như sau: - Dòng 1: Ghi số nguyên dương M là số lượng chữ số của số N (1 ≤ M ≤ 100). - Dòng 2: Ghi M chữ số của số N, các chữ số được ghi liền nhau. Dữ liệu ra: Ghi ra file văn bản CHIA9.OUT, theo cấu trúc như sau: - Dòng 1: Ghi số nguyên dương Q, là số dư tìm được. Ví dụ: CHIA9.INP CHIA9.OUT 5 74283 6

Bài 5: Tìm số sát sau - SOSATSAU.PAS Cho số tự nhiên A có N chữ số. Hãy hoán vị các chữ số trong A để thu được số B thoả mãn đồng thời hai điều kiện sau: - B lớn hơn A. - B nhỏ nhất. Dữ liệu vào: Cho trong file SOSATSAU.INP có cấu trúc như sau: - Dòng 1: Ghi số N là số lượng chữ số của A (0a[i-1]. Do đoạn cuối giảm dần, điều này thực hiện bằng cách tìm từ cuối dãy lên đầu gặp chỉ số k đầu tiên thỏa mãn a[k]>a[i-1] (có thể dùng tìm kiếm nhị phân) - Đảo giá trị a[k] và a[i-1] - Lật ngược thứ tự đoạn cuối giảm dần (từ a[i] đến a[k]) trở thành tăng dần + Nếu không tìm thấy tức là toàn dãy đã sắp xếp giảm dần, đây là hoán vị cuối cùng.

Bài 2. MẬT KHẨU. Cu Tí thường xuyên tham gia thi lập trình trên mạng. Vì đạt được thành tích cao nên Tí được gửi tặng một phần mềm diệt virus. Nhà sản xuất phần mềm cung cấp cho Tí một mã số là một dãy gồm các bộ ba chữ số ngăn cách nhau bởi dấu chấm và có chiều dài không quá 255 (kể cả chữ số và dấu chấm). Để cài đặt được phần mềm, Tí phải nhập vào mật khẩu của phần mềm. Mật khẩu là một số nguyên dương M được tạo ra bằng cách tính tổng giá trị các bộ ba chữ số trong dãy mã số, các bộ ba này được đọc từ phải sang trái. - Yêu cầu: Cho biết mã số của phần mềm, hãy tìm mật khẩu của phần mềm đó. - Dữ liệu vào: Cho từ tệp văn bản có tên BL2.INPgồm một dòng chứa xâu ký tự S (độ dài xâu không quá 255 ký tự) là mã số của phần mềm. - Kết quả: Ghi ra tệp văn bản có tên BL2.OUTgồm một số nguyên là mật khẩu tìm được. MK.INP MK.OUT 123.234 257

Bài 6: Biến đổi số BIENDOI.PAS Cho một số nguyên dương M có K chữ số (0 < M; 1 ≤ K ≤ 200). Người ta thực hiện biến đổi số M bằng cách xóa đi trong M các chữ số 0 và sau đó sắp xếp các chữ số còn lại theo thứ tự không giảm của giá trị từng chữ số. Gọi số nguyên dương N là số thu được sau khi thực hiện biến đổi số M. Yêu cầu: Hãy tìm số nguyên dương N. Dữ liệu vào: Nhập vào từ tệp biendoi.inp số M Dữ liệu ra: Ghi ra tệp biendoi.out số N Ví dụ: M=3880247 N=234788

0
28 tháng 6 2016

a bằng số dư của phép chia N cho 2

=>a=1

=>abcd có dạng 1bcd

e thuộc số dư của phép N cho 6

=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5

=> d,e thuộc 00.11.22.33.44.05 c bằng số dư của phép chia N cho 4

=>c,d,e thuộc 000.311.222.133.044.105

=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105 vì b bằng số dư của phép chia N cho 3

=>a+c+d+e chia hết cho 3

=> chọn được số 1b311.1b044

Ta được các số là : 10311.11311.12311.10044.11044.12044

30 tháng 6 2016

a bằng số dư của phép chia N cho 2

=>a=1

=>abcd có dạng 1bcd

e thuộc số dư của phép N cho 6

=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5

=> d,e thuộc 00.11.22.33.44.05

c bằng số dư của phép chia N cho 4

=>c,d,e thuộc 000.311.222.133.044.105

=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105

vì b bằng số dư của phép chia N cho 3

=>a+c+d+e chia hết cho 3

=> chọn được số 1b311.1b044

Ta được các số là : 10311.11311.12311.10044.11044.12044

Ai mướn mày trả lời hả Đức

Bài 1: Cho n là số nguyên dương lớn hơn 1.Tìm tất cả bộ số nguyên (a;b;c;d) thỏa mãn :an=bn+cn+dn+2005Bài 2: Trong 1 hội nghị có 41 người nam và nữ.Trong số 31 người bất kì luôn tìm được 1 đôi nam nữ quen nhau.Chứng minh rằng trong số 41 người đó luôn tìm được 12 đôi nam nữ quen nhau.Bài 3: Cho 1 hình chữ nhất có S=1.Bên trong có 5 điểm phân biệt sao cho không có 3 điểm nào thẳng hàng và có thể...
Đọc tiếp

Bài 1: Cho n là số nguyên dương lớn hơn 1.Tìm tất cả bộ số nguyên (a;b;c;d) thỏa mãn :
an=bn+cn+dn+2005

Bài 2: Trong 1 hội nghị có 41 người nam và nữ.Trong số 31 người bất kì luôn tìm được 1 đôi nam nữ quen nhau.Chứng minh rằng trong số 41 người đó luôn tìm được 12 đôi nam nữ quen nhau.

Bài 3: Cho 1 hình chữ nhất có S=1.Bên trong có 5 điểm phân biệt sao cho không có 3 điểm nào thẳng hàng và có thể nằm trên biên hình chữ nhật. Chứng minh rằng tồn tại ít nhất 2 tam giác có S=14(các tam giác có đỉnh là 3 trong 5 điểm trên).

Bài 4: Cho Ai là những tập hợp hữu hạn phần tử

|N⋃i=1Ai|=∑1≤k≤N|Ak|−∑1≤i1<i2≤N|Ai1∩Ai2|+⋯+(−1)N−1|A1∩A2∩⋯∩AN|

Trong đó |X| là số các phần tử của tập hợp X.

Bài 5: Cho đa giác lồi 2n-đỉnh: a1,...,a2n, P là một điểm nằm trong đa giác nhưng không nằm trên đường chéo nào. CMR số tam giác có các đỉnh trong a1,...,a2n chứa điểm P là một số chẵn.

Bài 6: Cho 1 từ có n âm tiết (VD: từ "đi chơi” có 2 âm tiết). Hỏi có bao nhiêu cách nói lái từ này trong 2 trường hợp :
-Mọi cách nói lái đều có thể chấp nhận.
- Có 1 số từ chỉ có thể nhận dấu sắc và dấu năng ( VD:dep, sat, gac…..).

Bài 7: Cho n-giác . Một số đường chéo của n-giác thỏa mãn 3 tính chất sau:
1) Không có 2 đường chéo nào cắt nhau (trong đoạn)
2) n-giác bị chia thành các tam giác
3) Số đường chéo xuất phát từ mỗi đỉnh đều là số chẵn ( có thể là 0 )
CMR: 3|n.

Bài 8: Một tập hợp gồm 1985 phần tử là 1985 số tự nhiên đầu tiên được chia làm 6 tập hợp.CM trong 1 tập có chứa ít nhất 3 phần tử(không nhất thiết phân biệt) thỏa mãn số lớn nhất bằng tổng 2 số còn lại.

Bài 9: Cho n là số tự nhiên, (n>2)
Xét các từ gồm n chữ n chữ B
Từ x1x2...x2n gọi là thuộcS(n) nếu có đúng 1 đoạn khởi đầu chứa lượng chữ B giống nhau
Tính:limS(n)R(n)

Bài 10:
Trong một hình chữ nhật 1999x2000 .Ở ô (i,j) ghi số 3x2 hoặc 5x2 rồi đổi dấu tất cả các số ở tất cả các ô trong hình chữ nhật.Hỏi sau một số chẵn lần thực hiện tổng các số trong bảng có thể là 1998 đuợc không?

Bài 11: Có thể phủ được hay không một bảng hình chữ nhật kích thước 5x7 bằng những hình thuớc thợ ba ô sao cho mỗi ô đều được phủ bởi một số lượng như nhau những hình thước thợ ?

Bài 12: Tìm số nguyên dương x1,x2,...,xn,a1,a2,...,an−1 với a1<a2<...<an−1 thỏa mãn x1x2...xn=1980 và xi+1980xi∀i=1,2,...,n−1

Bài 13: Chứng minh rằng không thể dùng 25 tấm domino cỡ 1x4 để phủ kín bảng vuông 10x10.

Bài 14: Đối với 1 đồ thị hữu hạn ta có thể xóa 1 cạnh tùy ý trong 1 vòng 4 cạnh tùy ý. Với đồ thị đầy đủ n đỉnh thì việc xóa cạnh có thể kết thúc sau ít nhất bao nhiêu lần?

Bài 15: Xác đinh tất cả các giá trị của m,n sao cho hinh chữ nhật m.n có thể lát khít kín bởi các hock:
**
*
***

Bài 16: Tìm hằng số C nhỏ nhất sao cho với mọi đồ thị hữu hạn G ta có
g3(G)≤c⋅f4(G)
trong đó g(G) và f(G) lần lượt là số các tứ diện, số các tam giác trong G

Bài 17: Tại 1 trường ĐH có 10001 SV, các SV tham gia các CLB, 1 SV có thể tham gia nhiều CLB, các CLB nghiên cứu các môn KH, 1CLB có thể nghiên cứu nhiều môn KH.Có k môn KH. Biết rằng:
i) mỗi cặp SV tham gia cùng nhau đúng 1 CLB
ii) không có SV nào tham gia 2 CLB nghiên cứu cùng 1 môn KH
iii) mỗi CLB có lẻ SV tham gia
iv) CLB có 2m+1 SV thì nghiên cứu đúng m môn KH
Tính k.

Bài 18: Người ta điền số vào 441 ô vuông của bảng vuông 21*21 sao cho tại mỗi hàng và mỗt cột có không quá 6 giá trị khác nhau được điền vào. Chứng minh rằng có một số xuất hiện ở ít nhất 3 hàng và ít nhất 3 cột của bảng vuông này.

Bài 19:
Câu 1)
Cho 1 điểm M không thuộc đường thẳng d. CM không tồn tại tập điểm Ai vô hạn thuộc d thỏa mãn :
-Khoảng cách AiAj∈Z
-MAi∈Z
Câu 2)
Như trên thay d bởi mặt phẳng (P).

Bài 20: Cho đường gâp khúc khép kín n đoạn thẳng:
Tìm n để đường gâp khúc tự căt mỗi đoạn thẳng của mình tại k điểm (k cho trước)
Với mỗi k và n ,tìm số giao điểm.

Bài 21: Tìm k để tồn tại đường gâp khúc khép kín n cạnh , tự cắt nhau k lân` (với n cho trước)

Bài 22: Với m là số nguyên dương,cho s(m) là tổng các chữ số của m.Với f(n) là số k nhỏ nhất sao cho tồn tại một tập S gồm n số nguyên dương thỏa mãn X của S.Chứng minh rằng tồn tại các hằng số dương 0<C1<C2 với C1lg(n)≤f(n)≤C2lg(n),∀n≥2.

Bài 23: Viết n số tự nhiên trên một đường tròn.Tìm n sao cho với mọi dãy gồm n số tự nhiên ta luôn tìm được hai số cạnh nhau sao cho sau khi xoá chúng đi các số còn lại có thể chia thành hai tập hợp có tổng các phần tử bằng nhau.

Bài 24: Cho bảng vuông 2n⋅2n(n∈N,n≥2) . Ta điền 2n2 số tự nhiên từ 1→2n2 vào bảng, mỗi số lặp lại hai lần.
Chứng minh rằng tồn tại một cách chọn 2n2 số tự nhiên từ 1→2n2 ,mỗi số một lần sao cho trên mỗi hàng và mỗi cột luôn có ít nhất 1 số được chọn.

Bài 25: Giả sử rằng có 18 ngọn hải đăng trên vịnh BaTư ,mỗi ngọn trong chúng có thể chiếu sáng được một góc 200.Chứng minh rằng có thể chọn hướng chiếu sáng của chúng sao cho toàn mặt vịnh BaTư được chiếu sáng.

Bài 26: Giả sử có n điểm phân biệt trên mặt phẳng. Có vòng tròn với bán kính r và tâm O trên mặt phẳng. Ít nhất một trong các điểm nằm trong vòng tròn. Chúng ta làm các hướng dẫn sau đây. Tại mỗi bước chúng ta di chuyển O đến trọng tâm của các điểm trong vòng tròn. Chứng minh rằng vị trí của O là không đổi sau khi một số hữu hạn bước.

Bài 27: Cho k là số nguyên dương và Sn={1,2,...,n},(n≥3). Hàm f:Skn→Sk thỏa mãn: nếu a,b∈Skn và chúng khác nhau ở tất cả các vị trí thì f(a)≠f(b). Chứng minh rằng có i∈{1,2,...,k} sao cho:
f(a1,a2,...,ak)=ai,∀a=(a1,a2,...,ak)∈Skn.

Bài 28: Cho (O) bán kính 1,và F là hình lồi đóng nằm trong C(Nghĩa là:Nếu P,Q là các điểm của F thì đoạn thẳng PQ nằm trong F;tất cả các điểm biên của F nằm trong F;tất cả các điểm của F nằm trong đường tròn C.).Hơn nữa giả sử rằng từ mỗi điểm của C có thể vẽ được hai tia tiếp tuyến của F mà góc giữa chúng bằng 600.Chứng minh rằng F là hình tròn bán kính 12.

Bài 29: Cho 100 điểm là đỉnh của đa giác đều 100 cạnh nội tiếp đường tròn. Lấy trong đó ra 20 điểm, 10 điểm tô màu đỏ, 10 điểm tô màu xanh. Chứng minh rằng tồn tại 2 cặp điểm có độ dài bằng nhau, 1 cặp cùng màu đỏ, 1 cặp cùng màu xanh.

Bài 30: Cho n số d1,d2,...,dn.
Tìm điều kiện cần và đủ để các số này là bậc của 1 đồ thị
a)n đỉnh
b)có giả thuyết a và là Đồ thị liên thông.
c)có giả thuyết a và có đường đi khép kín đến các đỉnh.

9
12 tháng 3 2016

nhanh cho ****

12 tháng 3 2016

bai nhu the thi bo may tra loi duoc ak

Giả thuyết PoincaréHenri Poincare (1854-1912), là nhà vật lý học và toán học người Pháp,một trong những nhà toán học lớn nhất thế kỷ 19. Giả thuyết Poincarédo ông đưa ra năm 1904 là một trong những thách thức lớn nhất của toán học thế kỷ 20Lấy một quả bóng (hoặc một vật hình cầu), vẽ trên đó một đường cong khép kín không có điểm cắt nhau, sau đó cắt quả bóng theo đường vừa vẽ:...
Đọc tiếp
  1. Giả thuyết Poincaré
    Henri Poincare (1854-1912), là nhà vật lý học và toán học người Pháp,
    một trong những nhà toán học lớn nhất thế kỷ 19. Giả thuyết Poincarédo ông đưa ra năm 1904 là một trong những thách thức lớn nhất của toán học thế kỷ 20

    Lấy một quả bóng (hoặc một vật hình cầu), vẽ trên đó một đường cong khép kín không có điểm cắt nhau, sau đó cắt quả bóng theo đường vừa vẽ: bạn sẽ nhận được hai mảnh bóng vỡ. Làm lại như vậy với một cái phao (hay một vật hình xuyến): lần này bạn không được hai mảnh phao vỡ mà chỉ được có một.
    Trong hình học topo, người ta gọi quả bóng đối lập với cái phao, là một về mặt liên thông đơn giản. Một điều rất dễ chứng minh là trong không gian 3 chiều, mọi bề mặt liên thông đơn giản hữu hạn và không có biên đều là bề mặt của một vật hình cầu.
    Vào năm 1904, nhà toán học Pháp Henri Poincaré đặt ra câu hỏi: Liệu tính chất này của các vật hình cầu có còn đúng trong không gian bốn chiều. Điều kỳ lạ là các nhà hình học topo đã chứng minh được rằng điều này đúng trong những không gian lớn hơn hoặc bằng 5 chiều, nhưng chưa ai chứng minh được tính chất này vẫn đúng trong không gian bốn chiều.
  2. Vấn đề P chống lại NP
    Với quyển từ điển trong tay, liệu bạn thấy tra nghĩa của từ “thằn lắn” dễ hơn, hay tìm một từ phổ thông để diễn tả “loài bò sát có bốn chân, da có vảy ánh kim, thường ở bờ bụi” dễ hơn? Câu trả lời hầu như chắc chắn là tra nghĩa thì dễ hơn tìm từ.
    Những các nhà toán học lại không chắc chắn như thế. Nhà toán học Canada Stephen Cook là người đầu tiên, vào năm 1971, đặt ra câu hỏi này một cách “toán học”. Sử dụng ngôn ngữ lôgic của tin học, ông đã định nghĩa một cách chính xác tập hợp những vấn đề mà người ta thẩm tra kết quả dễ hơn (gọi là tập hợp P), và tập hợp những vấn đề mà người ta dễ tìm ra hơn (gọi là tập hợp NP). Liệu hai tập hợp này có trùng nhau không? Các nhà lôgic học khẳng định P # NP. Như mọi người, họ tin rằng có những vấn đề rất khó tìm ra lời giải, nhưng lại dễ thẩm tra kết quả. Nó giống như việc tìm ra số chia của 13717421 là việc rất phức tạp, nhưng rất dễ kiểm tra rằng 3607 x 3808 = 13717421. Đó chính là nền tảng của phần lớn các loại mật mã: rất khó giải mã, nhưng lại dễ kiểm tra mã có đúng không. Tuy nhiên, cũng lại chưa có ai chứng minh được điều đó.
    “Nếu P=NP, mọi giả thuyết của chúng ta đến nay là sai” – Stephen Cook báo trước. “Một mặt, điều này sẽ giải quyết được rất nhiều vấn đề tin học ứng dụng trong công nghiệp; nhưng mặt khác lại sẽ phá hủy sự bảo mật của toàn bộ các giao dịch tài chính thực hiện qua Internet”. Mọi ngân hàng đều hoảng sợ trước vấn đề lôgic nhỏ bé và cơ bản này!
  3. Các phương trình của Yang-Mills
    Các nhà toán học luôn chậm chân hơn các nhà vật lý. Nếu như từ lâu, các nhà vật lý đã sử dụng các phương trình của Yang-Mills trong các máy gia tốc hạt trên toàn thế giới, thì các ông bạn toán học của họ vẫn không thể xác định chính xác số nghiệm của các phương trình này.
    Được xác lập vào những năm 50 bởi các nhà vật lý Mỹ Chen Nin Yang và Robert Mills, các phương trình này đã biểu diễn mối quan hệ mật thiết giữa vật lý về hạt cơ bản với hình học của các không gian sợi. Nó cũng cho thấy sự thống nhất của hình học với phần trung tâm của thể giới lượng tử, gồm tương tác tác yếu, mạnh và tương tác điện từ. Nhưng hiện nay, mới chỉ có các nhà vật lý sử dụng chúng…
  4. Giả thuyết Hodge
    Euclide sẽ không thể hiểu được gì về hình học hiện đại. Trong thế kỷ XX, các đường thẳng và đường tròn đã bị thay thế bởi các khái niệm đại số, khái quát và hiệu quả hơn. Khoa học của các hình khối và không gian đang dần dần đi tới hình học của “tính đồng đẳng”. Chúng ta đã có những tiến bộ đáng kinh ngạc trong việc phân loại các thực thể toán học, nhưng việc mở rộng các khái niệm đã dẫn đến hậu quả là bản chất hình học dần dần biến mất trong toán học. Vào năm 1950, nhà toán học người Anh William Hodge cho rằng trong một số dạng không gian, các thành phần của tính đồng đẳng sẽ tìm lại bản chất hình học của chúng…
  5. Giả thuyết Riemann
    2, 3, 5, 7, …, 1999, …, những số nguyên tố, tức những số chỉ có thể chia hết cho 1 và chính nó, giữ vai trò trung tâm trong số học. Dù sự phân chia các số này dường như không theo một quy tắc nào, nhưng nó liên kết chặt chẽ với một hàm số do thiên tài Thụy Sĩ Leonard Euler đưa ra vào thế kỷ XVIII. Đến năm 1850, Bernard Riemann đưa ra ý tưởng các giá trị không phù hợp với hàm số Euler được sắp xếp theo thứ tự. Giả thuyết của nhà toán học người Đức này chính là một trong 23 vấn đề mà Hilbert đã đưa ra cách đây 100 năm. Giả thuyết trên đã được rất nhiều nhà toán học lao vào giải quyết từ 150 năm nay. Họ đã kiểm tra tính đúng đắn của nó trong 1.500.000.000 giá trị đầu tiên, nhưng … vẫn không sao chứng minh được. “Đối với nhiều nhà toán học, đây là vấn đề quan trọng nhất của toán học cơ bản” – Enrico Bombieri, giáo sư trường Đại học Princeton, cho biết. Và theoDavid Hilbert, đây cũng là một vấn đề quan trọng đặt ra cho nhân loại. Bernhard Riemann (1826-1866) là nhà toán học Đức.
    Giả thuyết Riemann do ông đưa ra năm 1850 là một bài toán có vai trò cực kỳ quan trọng đến cả lý thuyết số lẫn toán học hiện đại.
  6. Các phương trình của Navier-Stokes
    Chúng mô tả hình dạng của sóng, xoáy lốc không khí, chuyển động của khí quyển và cả hình thái của các thiên hà trong thời điểm nguyên thủy của vũ trụ. Chúng được Henri Navier và George Stokes đưa ra cách đây 150 năm. Chúng chỉ là sự áp dụng các định luật về chuyển động của Newton vào chất lỏng và chất khí. Tuy nhiên, những phương trình của Navier-Stokes đến nay vẫn là một điều bí ẩn của toán học: người ta vẫn chưa thể giải hay xác định chính xác số nghiệm của phương trình này. “Thậm chí người ta không thể biết là phương trình này có nghiệm hay không” – nhà toán học người Mỹ Charles Fefferman nhấn mạnh – “Điều đó cho thấy hiểu biết của chúng ta về các phương trình này còn hết sức ít ỏi”.
  7. Giả thuyết của Birch và Swinnerton-Dyer
    Những số nguyên nào là nghiệm của phương trình x^2 + y^2 = z^2 ? có những nghiệm hiển nhiên, như 3^2 + 4^2 = 5^2. Và cách đây hơn 2300 năm, Euclide đã chứng minh rằng phương trình này có vô số nghiệm. hiển nhiên vấn đề sẽ không đơn giản như thế nếu các hệ số và số mũ của phương trình này phức tạp hơn… Người ta cũng biết từ 30 năm nay rằng không có phương pháp chung nào cho phép tìm ra số các nghiệm nguyên của các phương trình dạng này. Tuy nhiên, đối với nhóm phương trình quan trọng nhất có đồ thị là các đường cong êlip loại 1, các nhà toán học người Anh Bryan Birch và Peter Swinnerton-Dyer từ đầu những năm 60 đã đưa ra giả thuyết là số nghiệm của phương trình phụ thuộc vào một hàm số f: nếu hàm số f triệt tiêu tại giá trị bằng 1 (nghĩa là nếu f(1)= 0), phương trình có vô số nghiệm. nếu không, số nghiệm là hữu hạn.
    Giả thuyết nói như thế, các nhà toán học cũng nghĩ vậy, nhưng đến giờ chưa ai chứng minh được…

    Người ta thấy vắng bóng ngành Giải tích hàm (Functional analysí) vốn được coi là lãnh vực vương giả của nghiên cứu toán học. Lý do cũng đơn giản : những bài toán quan trọng nhất của Giải tích hàm vừa mới được giải quyết xong, và người ta đang đợi để tìm được những bài toán mới. Một nhận xét nữa : 7 bài toán đặt ra cho thế kỉ 21, mà không phải bài nào cũng phát sinh từ thế kỉ 20. Bài toán P-NP (do Stephen Cook nêu ra năm 1971) cố nhiên là bài toán mang dấu ấn thế kỉ 20 (lôgic và tin học), nhưng bài toán số 4 là giả thuyết Riemann đã đưa ra từ thế kỉ 19. Và là một trong 3 bài toán Hilbert chưa được giải đáp !
    Một giai thoại vui: Vài ngày trước khi 7 bài toán 1 triệu đôla được công bố, nhà toán học Nhật Bản Matsumoto (sống và làm việc ở Paris) tuyên bố mình đã chứng minh được giả thuyết Riemann. Khổ một nỗi, đây là lần thứ 3 ông tuyên bố như vậy. Và cho đến hôm nay, vẫn chưa biết Matsumoto có phải là nhà toán học triệu phú đầu tiên của thế kỉ 21 hay chăng..
9
17 tháng 3 2016

đền tiền thuốc mắt đi ! đọc xong hoa hít mắt rùi

17 tháng 3 2016

hay quá, h em rồi em h lại cho