K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

Ta có: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

\(\Leftrightarrow\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2\le x^2+y^2+2.\left|x\right|.\left|y\right|\)

\(\Leftrightarrow2xy\le\left|2xy\right|\)( BĐT luôn đúng )

Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

29 tháng 10 2016

Bài cô Thành à

 

29 tháng 10 2016

ừm

 

13 tháng 3 2022

\(A=\left(x-1\right)^2+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ 1>0.\\ \Rightarrow\left(x-1\right)^2+1\ge1\forall x\in R.\\ \Rightarrow A\ge1.\\ \Rightarrow A_{min}=1.\)

\(B=x^2+x^4-\dfrac{1}{2}.\\ x^2+x^4\ge0\forall x\in R.\\ \Leftrightarrow x^2+x^4-\dfrac{1}{2}\ge\dfrac{-1}{2}\forall x\in R.\\ \Rightarrow B\ge\dfrac{-1}{2}.\\ \Rightarrow B_{min}=\dfrac{-1}{2}.\)

\(D=\dfrac{2}{\left(x-1\right)^2}+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}\ge0.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}+1\ge1\forall x\in R.\\ \Rightarrow D\ge1.\\ \Rightarrow D_{min}=1.\)

15 tháng 3 2022

Mình cảm ơn

Bài 2: 

a: \(f\left(-x\right)=-x+\left|-x\right|=-x+\left|x\right|< >f\left(x\right)\)

Vậy: Hàm số không chẵn cũng không lẻ

b: \(f\left(-x\right)=-x-\left|-x\right|=-x-\left|x\right|< >f\left(x\right)\)

Vậy: Hàm số không chẵn cũng không lẻ