K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

hình tự vẽ nhé:

Áp dụng hệ thức lượng ta có:

       \(AC^2=HC.BC=9BC\)

       \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(400+9BC=BC^2\)

\(\Leftrightarrow\)\(BC^2-9BC-400=0\)

\(\Leftrightarrow\)\(\left(BC-25\right)\left(BC+16\right)=0\)

\(\Leftrightarrow\)\(BC=25\)

 \(\Rightarrow\)\(AC^2=9.25=225\)

\(\Rightarrow\)\(AC=\sqrt{225}=15\)

     Áp dụng hệ thức lượng ta có:

              \(AB.AC=AH.BC\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}\)

\(\Rightarrow\)\(AH=\frac{20.15}{25}=12\)

10 tháng 7 2018

MÌNH CẦN BÀI 2 BÀI 1 ĐƯỢC RỒI 

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

30 tháng 9 2021

bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=152+202=625
  BC=25cm
* AH.BC=AB.AC
  AH.25=15.20
  AH.25=300
  AH=12cm

30 tháng 9 2021

tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
 AC2=252-152=400
 AC=20cm

27 tháng 10 2021

a: AC=16(cm)

AM=10(cm)

27 tháng 10 2021

phần d bạn :,)))

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d

3:

ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

11 tháng 11 2021

Câu 15:

a: ĐKXĐ: x>=0; x<>1

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=4^2-2^2=12\)

\(\Leftrightarrow HB=2\sqrt{3}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{2^2}{2\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)

27 tháng 7 2021

cảm ơn

khocroi

1 tháng 8 2023

A B C H I

a/

\(BC=\sqrt{AB^2+AC^2}\) (Pitago)

\(\Rightarrow BC=\sqrt{10^2+15^2}=\sqrt{325}=5\sqrt{13}\)

\(AB^2=HB.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{10^2}{5\sqrt{13}}=\dfrac{20\sqrt{13}}{13}\)

\(HC=BC-HB=5\sqrt{13}-\dfrac{20\sqrt{13}}{13}\)

\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

Bạn tự thay số tính nốt nhé vì số hơi lẻ

b/

Áp dụng tính chất đường phân giác trong tg: đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn thẳng ấy

\(\Rightarrow\dfrac{IA}{IC}=\dfrac{AB}{BC}=\dfrac{10}{5\sqrt{13}}=\dfrac{2\sqrt{13}}{13}\)

Mà \(IA+IC=AC=15\) Từ đó tính được IA và IC

Xét tg vuông ABI có

\(BI=\sqrt{AB^2+IA^2}\) (pitago)

Bạn tự thay số tính nhé

 

25 tháng 10 2021

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

26 tháng 10 2021

Giải dùm em câu d nữa ạ