Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y+z=0\\z+x=0\end{cases}}\)
Với x = - y thì
\(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{-y}+\frac{1}{y}+\frac{1}{z}=\frac{1}{z}\)
\(Q=\frac{1}{x+y+z}=\frac{1}{-y+y+z}=\frac{1}{z}\)
\(\Rightarrow\)P = Q
Tương tự cho 2 trường hợp còn lại
Xét ΔDAB có OI//AB
nên \(\dfrac{OI}{AB}=\dfrac{DO}{DB}\)
Xét ΔBDC có OK//DC
nên \(\dfrac{OK}{CD}=\dfrac{BO}{BD}\)
=>\(\dfrac{OI}{AB}+\dfrac{OK}{CD}=\dfrac{BO}{BD}+\dfrac{DO}{DB}=1\)
Xét ΔADC có OI//DC
nên \(\dfrac{OI}{DC}=\dfrac{AI}{AD}\)
Xét ΔBDC có OK//DC
nên \(\dfrac{OK}{DC}=\dfrac{BK}{BC}\)
Xét hình thang ABCD có IK//AB//CD
nên \(\dfrac{AI}{AD}=\dfrac{BK}{BC}\)
=>\(\dfrac{OI}{DC}=\dfrac{OK}{DC}\)
=>OI=OK
=>\(\dfrac{OI}{AB}+\dfrac{OK}{CD}=\dfrac{OI}{AB}+\dfrac{OI}{CD}=1\)