K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

Bài 1: 

Ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y+z=0\\z+x=0\end{cases}}\)

Với x = - y thì

\(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{-y}+\frac{1}{y}+\frac{1}{z}=\frac{1}{z}\)

\(Q=\frac{1}{x+y+z}=\frac{1}{-y+y+z}=\frac{1}{z}\)

\(\Rightarrow\)P = Q

Tương tự cho 2 trường hợp còn lại

16 tháng 2 2017

Ối trời Hình bạn phải vẽ ra: 

15 tháng 10 2023

Xét ΔDAB có OI//AB

nên \(\dfrac{OI}{AB}=\dfrac{DO}{DB}\)

Xét ΔBDC có OK//DC
nên \(\dfrac{OK}{CD}=\dfrac{BO}{BD}\)

=>\(\dfrac{OI}{AB}+\dfrac{OK}{CD}=\dfrac{BO}{BD}+\dfrac{DO}{DB}=1\)

Xét ΔADC có OI//DC
nên \(\dfrac{OI}{DC}=\dfrac{AI}{AD}\)

Xét ΔBDC có OK//DC

nên \(\dfrac{OK}{DC}=\dfrac{BK}{BC}\)

Xét hình thang ABCD có IK//AB//CD

nên \(\dfrac{AI}{AD}=\dfrac{BK}{BC}\)

=>\(\dfrac{OI}{DC}=\dfrac{OK}{DC}\)

=>OI=OK

=>\(\dfrac{OI}{AB}+\dfrac{OK}{CD}=\dfrac{OI}{AB}+\dfrac{OI}{CD}=1\)