K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đường link phía dưới nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

28 tháng 3 2020

Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html

13 tháng 4 2020

hình tự vẽ nhé

do PK // BD =) áp dụng định lí ta-lét vào tam giác CBD được: CP/PB = CK/KD      (1)

dễ dàng chứng minh được tứ giác ABKD là hình bình hành =) KD=AB và AD=BK

tương tự tứ giác ABCI cũng là hình bình hành =) AI =BC

có góc PKC= góc BDC (PK//BD)

góc BDA=góc BKP (cùng = DBK)

góc AID=góc BCK 

dễ dàng =) góc ADI = góc BCK  

=) góc DAI = góc KBC

=) tam giác DAI = tam giác KBC (c-g-c) =) DI=KC

vì AB//DI nên áp dụng hệ quả của định lí ta-lét đc: DI/AB=DM/MB=KC/KD    (2)

từ (1) và (2) =) BM/MD = BP/PC 

áp dụng định lí ta lét đảo =) MP//DC

chưa hiểu thì hỏi nhé

13 tháng 4 2020

kohkkij

a)

Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau

\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)

Áp dụng định lý Ta-lét:

\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)

\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)

Maf \(CI=DK\)(cmt)

\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD

b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:

\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)

\(\Rightarrow AB^2=EF.CD\)( đpcm )