Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
OP là đường trung bình tam giác BCD \(\Rightarrow OP//CD\)
Gọi Q là trung điểm SC \(\Rightarrow\) NQ là đường trung bình tam giác SCD \(\Rightarrow NQ//CD//OP\)
\(\Rightarrow NQ=\left(NPO\right)\cap\left(SCD\right)\)
Trong mp (SBD), nối NM kéo dài cắt SB tại G
\(\Rightarrow AG=\left(SAB\right)\cap\left(AMN\right)\)
Trong mp (ABCD), nối PM kéo dài cắt AD tại H
Trong mp (SAD), nối HN cắt SA tại E
\(\Rightarrow E=SA\cap\left(MNP\right)\)
Nhìn đi nhìn lại cũng ko biết ME//PN kiểu gì
Dễ dàng chứng minh EG=EN, mà GM=3MP nên ME không thể song song PN
Gọi F là giao điểm của MP và AB, I là giao điểm MP và CD
Trong mp (SCD), nối IN cắt SC tại J
Thiết diện là đa giác FENJP
P/s: Ngu phần hình ko gian nên chỉ giúp được thế này thôi nhó :)
Gọi E là giao điểm AB và CD
\(\Rightarrow E=\left(SAB\right)\cap\left(SCD\right)\)
\(\Rightarrow SE=\left(SAB\right)\cap\left(SCD\right)\)
b.
Do M là trung điểm SC, N là trung điểm BC
\(\Rightarrow MN\) là đường trung bình tam giác SBC
\(\Rightarrow MN||SB\)
Mà \(SB\in\left(SBD\right)\Rightarrow MN||\left(SBD\right)\)
c.
Trong mp (ABCD), nối AN cắt CD kéo dài tại F
Trong mp (SCD), nối FM kéo dài cắt SD tại G
\(\Rightarrow G=SD\cap\left(AMN\right)\)