K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: AE+EB=AB

AF+FC=AC

mà AB=AC
và EB=FC

nên AE=AF

hay A nằm trên đường trung trực của FE(1)

Xét ΔEBH và ΔFCH có 

EB=FC
\(\widehat{B}=\widehat{C}\)

BH=CH

Do đó: ΔEBH=ΔFCH

Suy ra: HE=HF

hay H nằm trên đường trung trực của FE(2)

Từ (1) và (2) suy ra E và F đối xứng nhau qua AH

a: Xét ΔEBH và ΔFCH có 

EB=FC

\(\widehat{B}=\widehat{C}\)

BH=CH

Do đó: ΔEBH=ΔFCH

Suy ra: HE=HF

hay H nằm trên đường trung trực của EF(1)

Ta có: AE=AF

nên A nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra E và F đối xứng nhau qua AH

8 tháng 8 2021

a)Xét tam giác ABC có \(\dfrac{BE}{AB}=\dfrac{CF}{AC}\Rightarrow EF//BC\Rightarrow EF\perp AH\)

Chứng minh được tam giác BEH = tam giác CFH (g.c.g)

\(\Rightarrow EH=HF\)

Nên E đx với F qua H

b) Ta có \(AH\cap BK\cap CI=O\)

Mà \(O\in AH\) và \(AH\) là đường cao

\(\Rightarrow\)BK và CI là đường cao 

Chứng minh được \(\Delta AKB=\Delta AIC\left(ch-gn\right)\)

\(\Rightarrow BK=CI;\widehat{ABK}=\widehat{ACI}\)

Mà BE=CF

\(\Rightarrow\Delta BEK=\Delta CFI\left(c.g.c\right)\)

\(\Rightarrow EK=FI\)

8 tháng 8 2021

Đặt đề hơi ảo vì có 2 góc H nên mình sẽ để CO cắt AB tại I

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

16 tháng 11 2018

B D V N M K E C

a) Xét tứ giác ADME có :

Góc A = 90( tam giác ABC vuông tại A )

Góc D = 900 ( MD vuông góc AB )

Góc E = 900 ( ME vuông góc AC )

Do đó tứ giác ADME là hình chữ nhật

b) Chứng minh đúng D, E là trung điểm của AB ; AC

Chứng minh đúng DE là đường trung bình của tam giác 

ABC nên DE song song và \(DE=\frac{BC}{2}\)

Cho nên DE song song với BM và DE = BM

=> Tứ giác BDME là hình bình hành

c) Xét tứ giác AMCF có :

E là trung điểm MF ( vì M đối xứng với F qua E )

Mà E là trung điểm của AC ( cmt )

Nên tứ giác AMCF là hình bình hành 

Ta có AC vuông góc MF ( vì ME vuông góc AC )

Do đó tứ giác AMCF là hình thoi

d) Chứng minh đúng tứ giác ABNE là hình chữ nhật

Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE

trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE

nên \(KO=\frac{BE}{2}\)

mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)

trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN

nên tam giác AKN vuông tại A 

Vậy AK vuông góc KN

5 tháng 12 2018

$\in $