Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3)
a)\(\frac{4n+5}{n}=4+\frac{5}{n}\)nguyen nen n\(\in\)U(5)=\(\left\{1,5\right\}\)vi n thuoc N
b)\(\frac{n+5}{n+1}=1+\frac{4}{n+1}\)nguyen nen (n+1)\(\in U\left(4\right)=\left\{1,2,4\right\}\)vi n+1>-1
=> n\(\in\left\{0,1,3\right\}\)
Bài 1:
a)[(2x-13):7].4 = 12
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
\(\Leftrightarrow\frac{8x-52}{7}=\frac{12}{1}\Rightarrow\left(8x-52\right)1=7.12\)
Chia cả hai vế cho 4 ta đc:
\(\frac{8x-52}{4}=\frac{7.12}{4}\)
\(\Leftrightarrow2x-13=21\)
\(\Leftrightarrow2x=34\)
\(\Leftrightarrow x=17\)
b.1270:[115 - (x-3)] = 254
\(\Leftrightarrow\frac{1270}{118-x}=254\)
\(\Leftrightarrow-\frac{254\left(x-113\right)}{x-118}=0\)
\(\Leftrightarrow-254\left(x-113\right)=0\)
\(\Leftrightarrow x-113=0\)
\(\Leftrightarrow x=113\)
Bài 2:(mk ngu toán CM)
Bài 3:
a)\(\frac{4n+5}{n}=\frac{4n}{n}+\frac{5}{n}=4+\frac{5}{n}\in Z\)
=>5 chia hết n
=>n thuộc Ư(5)
=>n thuộc {1;5) Vì n thuộc N
b)(n+5) chia hết cho (n+1)
=>n+1+4 chia hết n+1
=>4 chia hết n+1
=>n+1 thuộc Ư(4)
=>n+1 thuộc {1;2;4} Vì n thuộc N
=>n thuộc {0;1;3}
Bài 1:
a. $2x-10-[3x-14-(4-5x)-2x]=2$
$2x-10-3x+14+(4-5x)+2x=2$
$-x-10+14+4-5x+2x=2$
$-4x+8=2$
$-4x=-6$
$x=\frac{-6}{-4}=\frac{3}{2}$
b. Đề sai. Bạn xem lại.
c.
$|x-3|=|2x+1|$
$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$
$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$
Bài 2:
a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$
Ta có:
$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)
b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$
Ta có:
$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)
c.
Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.
Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$
Tổng của $n$ số nguyên liên tiếp là:
$a+(a+1)+(a+2)+....+(a+n-1)$
$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$
$=n[a+\frac{n-1}{2}]$
Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên
$\Rightarrow a+\frac{n-1}{2}$ nguyên
$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$
a: \(A=3^x\left(3^2+3+1\right)=3^x\cdot13=3^{x-1}\cdot39⋮39\)
b: \(\Leftrightarrow5^x\cdot25+5^x\cdot5+5^x=105\)
\(\Leftrightarrow5^x\cdot31=105\)(vô lý)