Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÓ ÍT NHẤT 1 cầu thủ ghi bàn có 2 cách làm
cách thứ nhất:
có ít nhất 1 cầu thủ ghi bàn có 3 trường hợp xảy ra là: cầu thủ 1 ghi bàn cầu thủ 2 không ghi bàn, cầu thủ 2 ghi bàn cầu thủ 1 không ghi bàn, và cả 2 cầu thủ ghi bàn
suy ra sx bằng: 0.8.0,3+0,7.0,2+0,7.,8
cách thứ 2 là : sử dụng biến cố đối
A: không có cầu thủ nào ghi bàn
với P(A)=0,2.0,3
B" có ít nhất 1 cầu thủ ghi bàn"
P(B)=1-P(A)=1-0,2.0,3
Chọn B.
Phương pháp
Tính xác suất theo phương pháp biến cố đối: “Không có cầu thủ nào sút vào”.
Cách giải:
Gọi A là biến cố: “Ít nhất một cầu thủ sút vào”.
Khi đó A ¯ là biến cố: “Không có cầu thủ nào sút vào”.
Đáp án B
Gọi A là biến cố “Cú sút đó không vào lưới”. Nếu cầu thủ sút vào vị trí 1 hoặc 2, xác suất để bóng không vào bằng 2 1 4 . 1 4 = 1 8 . Nếu cầu thủ sút cào vị trí 3 hoặc 4, xác suất để bóng không vào bằng 2 1 4 . 1 4 . 1 2 = 1 16 . Suy ra xác suất để bóng không vào bằng P A = 1 8 + 1 16 = 3 16 .
Đáp án C
Gọi X ¯ là biến cố: Không một xạ thủ nào bắn trúng. Khi đó X ¯ = A ¯ ∪ B ¯ ∪ C ¯ . Do A, B, C độc lập với nhau nên A ¯ ; B ¯ ; C ¯ độc lập với nhau.
Suy ra P X ¯ = 0 , 3 . 0 , 4 . 0 , 5 = 0 , 06 ⇒ P X ¯ = 1 - P X ¯ = 0 , 94 .
Chọn đáp án A
Gọi Ai là biến cố “cầu thủ thứ I ghi bàn” với i ∈ 1 ; 2 ; 3 .
Các biến cố Ai độc lập với nhau và P(A1) = x; P(A2) = y; P(A3) = 0,6.
* Gọi A là biến cố “Có ít nhất một trong ba cầu thủ ghi bàn” P(A) = 0,976.
Ta có là biến cố “không có cầu thủ nào ghi bàn”.
Ta có phương trình
* Gọi B là biến cố “Cả ba cầu thủ đều ghi bàn” P(B) = 0,336.
Mặt khác P(B) = P(A1).P(A2).P(A3) = 0,6xy.
Ta có phương trình
* Từ (1) và (2) ta có hệ phương trình
Suy ra x, y là nghiệm của phương trình
Do x > y nên x = 4 5 = 0 , 8 và y = 7 10 = 0 , 7 .
* Gọi C là biến cố “Có đúng hai cầu thủ ghi bàn”
Khi đó
⇒ P C = 0 , 452