K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 2 2020

\(b=6;c=4;m_b=3\)

Áp dụng công thức trung tuyến:

\(m_b^2=\frac{a^2+c^2}{2}-\frac{b^2}{4}\Rightarrow a=\sqrt{2m_b^2+\frac{b^2}{2}-c^2}=2\sqrt{5}\)

NV
21 tháng 3 2021

Áp dụng công thức trung tuyến:

\(BM^2=\dfrac{2\left(AB^2+BC^2\right)-AC^2}{4}\Rightarrow AC^2=2\left(AB^2+BC^2\right)-4BM^2=16\)

\(\Rightarrow AC=4\)

7 tháng 9 2017

Chọn D.

Gọi M là trung điểm của AC suy ra

 .

Do tam giác BAM vuông tại A

13 tháng 2 2017

 

Áp dụng hệ thức đường trung tuyến m a 2 = b 2 + c 2 2 − a 2 4  ta được:

m a 2 = A C 2 + A B 2 2 − B C 2 4 = 12 2 + 9 2 2 − 15 2 4 = 225 4 .

⇒ m a = 15 2 .

Chọn A.

23 tháng 5 2018

Chọn A.

Áp dụng hệ thức đường trung tuyến  ta được:

Suy ra : ma= 7,5.

8 tháng 2 2018

Chọn D.

Cách 1: Áp dụng công thức đường trung tuyến  ta được:

Suy ra ma = 5

Cách 2: nhận xét đây là tam giác vuông tại A nên m= 1/2. BC = 5.

27 tháng 8 2023

Để tính độ dài AM, ta có thể sử dụng định lý Pythagoras. Định lý này cho biết rằng trong một tam giác vuông, bình phương của độ dài cạnh huyền (đường chéo dài nhất) bằng tổng bình phương của độ dài hai cạnh góc vuông.

Trong trường hợp này, ta có AB = AC = a và BM = BC/√3. Để tìm độ dài AM, ta cần tìm độ dài cạnh còn lại của tam giác ABC.

Áp dụng định lý Pythagoras, ta có: AM^2 + BM^2 = AB^2

Thay các giá trị đã biết vào, ta có: AM^2 + (BC/√3)^2 = a^2

Giải phương trình trên, ta có thể tính được độ dài AM.