Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
Rút gọn sẽ chứng minh được :
ta có: (3x+7)(2x+3)-(3x-5)(2x+11)=6x2+9x+14x+21-(6x2+33x-10x-55)
=21+55=76 ko phụ thuộc vào x .
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
a) \(\left(2x-3\right)^2=16\)
\(\left(2x-3\right)^2=4^2\)
\(2x-3=4\)
\(2x=7\)
\(x=\dfrac{7}{2}=3,5\)
b) \(\left(3x-2\right)^5=-243\)
\(\left(3x-2\right)^5=-3^5\)
\(3x-2=-3\)
\(3x=-1\)
\(3x=-\dfrac{1}{3}\)
c) \(\left(x-7\right)^{x+1}=\left(x-7\right)^{x+11}\)
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\left(x-7\right)^{x+1}\times\left[1-\left(x-7\right)^{10}\right]=0\)
\(\left(x-7\right)^{x+1}=0\) ; \(1-\left(x-7\right)^{10}=0\)
\(x-7=0;\left(x-7\right)^{10}=1\)
\(x=7;\left(x-7=1;x-7=-1\right)\)
\(x=7;x=8;x=6\)
a, (2\(x\) - 3)2 = 16
\(\left[{}\begin{matrix}2x-3=-4\\2x-3=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-1\\2x=7\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(x\in\){ - \(\dfrac{1}{2}\); \(\dfrac{7}{2}\)}
b, (3\(x\) - 2)5 = -243
( 3\(x\) - 2)5 = (-3)5
3\(x\) - 2 = -3
3 \(x\) = -1
\(x\) = - \(\dfrac{1}{3}\)
Vậy \(x\) = -\(\dfrac{1}{3}\)
c, \(\left(x-7\right)\)\(x+1\) = (\(x-7\))\(x+11\)
(\(x-7\))\(^{x+1}\).( \(\left(x-7\right)^{10}\) - 1 ) = 0
\(\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=7\\x-7=-1\\x-7=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=7\\x=6\\x=8\end{matrix}\right.\)
Vậy \(x\in\){ 6; 7; 8}
`b,`
`(3x-5)(2x+11)-(2x+3)(3x+7)`
`= 3x(2x+11)-5(2x+11) - 2x(3x+7) - 3 (3x+7)`
`= 6x^2+33x-10x-55 - 6x^2 - 14x - 9x - 21`
`= -76`