Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(n=0\Rightarrow n^4+n^3+n^2=0=0^2\left(TM\right)\)
\(n^4+n^3+n^2\)
\(=n^2\left(n^2+n+1\right)\)
\(\Rightarrow\)Để \(n^4+n^3+n^2\) là số chính phương thì \(\left(n^2+n+1\right)\) là số chính phương.
Có \(n^2< n^2+n+1< n^2+2n+1=\left(n+1\right)^2\)
\(\Rightarrow n^2+n+1\) không là số chính phương
Vậy ...
1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
+) Xét n = 2k ( n chẵn) => 2n3; 2n2; 2n đều chia hết cho 4 ; 7 chia 4 dư 3
=> A chia cho 4 dư 3
Mà Số chính phương chia cho 4 chỉ dư 0 hoặc 1=> không có số n chẵn nào để A là số chính phương
+) Xét n lẻ : n = 2k + 1
A = 2n .(n2 + n + 1) + 7 = 2(2k +1).(4k2 + 4k + 1 + 2k + 1+ 1) + 7 = (4k + 2). (4k2 + 6k + 3) + 7
= 16k3 + 24k2 + 12k + 8k2 + 12k + 6 + 7
= 16k3 + 32k2 + 24k + 13
13 chia cho 8 dư 5 ; 16k3; 32k2; 24k chia hết cho 8 => A chia cho 8 dư 5
Mà số chính phương chia cho 8 dư 0 hoặc 1; 4 ( chứng minh dễ dàng bằng cách xét các trường hợp; 8m; 8m + 1; ..; 8m+ 7)
=> Không có số n lẻ nào để A là số chính phương
Vậy Không tồn tại số nguyên n để A là số chính phương
+) Xét n = 2k ( n chẵn) => 2n3; 2n2; 2n đều chia hết cho 4 ; 7 chia 4 dư 3
=> A chia cho 4 dư 3
Mà Số chính phương chia cho 4 chỉ dư 0 hoặc 1=> không có số n chẵn nào để A là số chính phương
+) Xét n lẻ : n = 2k + 1
A = 2n .(n2 + n + 1) + 7 = 2(2k +1).(4k2 + 4k + 1 + 2k + 1+ 1) + 7 = (4k + 2). (4k2 + 6k + 3) + 7
= 16k3 + 24k2 + 12k + 8k2 + 12k + 6 + 7
= 16k3 + 32k2 + 24k + 13
13 chia cho 8 dư 5 ; 16k3; 32k2; 24k chia hết cho 8 => A chia cho 8 dư 5
Mà số chính phương chia cho 8 dư 0 hoặc 1; 4 ( chứng minh dễ dàng bằng cách xét các trường hợp; 8m; 8m + 1; ..; 8m+ 7)
=> Không có số n lẻ nào để A là số chính phương
Vậy Không tồn tại số nguyên n để A là số chính phương
\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)
\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1
Vậy với n>1 A không thể Cp
Xét không thỏa mãn.
Xét
Với thì:
Mặt khác, xét :
với mọi
Như vậy , suy ra để $A$ là số chính phương thì
Suy ra
\(n^4+2n^3+2n^2+n+7=k^2\)
\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)
\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)
\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)
\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)
Làm nôt
\(a=n^2\left(n^4-n^2+2n+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3-n^2+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3+1-n^2+1\right)\)
A=\(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
A=\(n^2\left(n+1\right)^2\left(n-1\right)+n^2\left(n+1\right)^2\)
nhận thấy n^2 -2n+2=\(\left(n-1\right)^2+1>\left(n-1\right)^2\)(1) (vì n>1)
vì n>1 => 2n>2
=>2n-2>0
=>\(n^2-\left(2n-2\right)< n^2\)
hay \(n^2-2n+2< n^2\)(2)
từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)
=>\(n^2-2n+2\)không là số chính phương
=> A= \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) không là số chính phương
mình làm tắt chỗ nào không hiểu hỏi mình trả lời cho
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.
b1,
\(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)
=>n4+n3+n2+n+1=(n+1)4<=>n=0
nhầm sai rồi nếu n^4+n^3+n^2+n+1 là scp thì mới chặn đc nhưng ở đây lại ko phải