K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2022

a: Xét ΔABN và ΔAMC có

AB=AM

góc BAN=góc MAC

AN=AC

Do đó: ΔABN=ΔAMC

b: Gọi giao của ME với AB là D, NE với AC là F

góc AMD+góc MDA=90 độ

=>góc AMD+góc BDE=90 độ

=>góc DBE+góc BDE=90 độ

=>góc BED=90 độ

=>BN vuông góc với CM

c: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2

=CN^2+BM^2

=>MN^2=7+5-3=9cm

=>MN=3cm

9 tháng 8 2016

a)xét 2 tam giác AMC và ABN có:

AM =AB (tam giác AMB vuông cân)

góc MAC=góc BAN(vì cùng = 90độ+goác BAC)

AN =AC(ANC vuông cân)

=> 2 tam giác AMC=ABN(c.g.c)

=> 2 góc ANB =ACM ( 2 góc tương ứng)

b)gọi O là giao điểm của BN và AC

xét tam giác AON vuông ở A 

=> góc ANO +góc AON =90độ 

góc DOC =góc AON (đối đỉnh)

mà góc ANB=góc ACM (theo a)

=> góc DOC+góc DCO =90độ

=> góc ODC =90độ 

hay BN vuông góc với CM 

 

               

 

3 tháng 4 2020

còn câu c với câu d đâu ạ

 

21 tháng 12 2022

a: Xét ΔABN và ΔAMC có

AB=AM

góc BAN=góc MAC

AN=AC

Do đó: ΔABN=ΔAMC

Gọi giao của ME với AB là D, NE với AC là F

góc AMD+góc MDA=90 độ

=>góc AMD+góc BDE=90 độ

=>góc DBE+góc BDE=90 độ

=>góc BED=90 độ

=>BN vuông góc với CM

b: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2

=CN^2+BM^2

=>MN^2=7+5-3=9cm

=>MN=3cm

22 tháng 12 2021

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì ΔAMC=ΔABNΔAMC=ΔABNnên

ˆFMA=ˆFBIFMA^=FBI^

mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O

=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O

Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O

Mà ˆIMB+ˆMBIIMB^+MBI^=900

=>...

22 tháng 12 2021

a) Thấy 

Từ đây ta xét t/g MAC và BAN ta có:

=>MA=BA; AC=AN

=>

=>ΔMAC=ΔBAN(c−g−c)⇒MC=BNΔMAC=ΔBAN(c−g−c)⇒MC=BN

đpcm.

b)

Ta gọi giao điểm của MC  và BN là 1 điểm D

Ta có: ˆDBA=ˆDMA(ΔMAC=ΔBAN(c−g−c))DBA^=DMA^(ΔMAC=ΔBAN(c−g−c))

Nên ˆMBD+ˆBMD=ˆMBA+ˆDBA+ˆBMD=ˆMBA+ˆDMA+ˆBMD=ˆMBAMBD^+BMD^=MBA^+DBA^+BMD^=MBA^+DMA^+BMD^=MBA^

+ˆBMA=90o+BMA^=90o

Xét t/g MBD có ˆMBD+ˆBMD=90o⇒ˆBMD=90oMBD^+BMD^=90o⇒BMD^=90o

⇒BN⊥MC⇒BN⊥MC

Bổ sung D giao điểm nhé vào hình nha bn.

c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm

Áp dụng định lý pi-ta-go ta có:

Cho t/g MAB và NAC thì MB=NC=4√2(cm)42(cm)

Khi ABC đều cạnh 4cm thì AMC = NAB là t/g  vuông cân có  góc ở đỉnh : 90o+60o=150o

=>ˆAMC=ˆACMAMC^=ACM^= (180o-150o):2=15o

Thì 

Lại có 

Vì t/gMAN cân tại A nên = (180o-120o) : 2 =30o

=> 

=>

=> BC//MN ( so le trong)

đpcm.

22 tháng 12 2021

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì ΔAMC=ΔABNΔAMC=ΔABNnên

ˆFMA=ˆFBIFMA^=FBI^

mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O

=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O

Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O

Mà ˆIMB+ˆMBIIMB^+MBI^=900

=>...

18 tháng 1

Có ai có phần d không ạ 

7 tháng 4 2019

Câu 1 sai đề 100% nên check lại đi bạn nhé!

phải là cm\(\Delta AMC=\Delta ABN\)

21 tháng 12 2022

a: Xét ΔABN và ΔAMC có

AB=AM

góc BAN=góc MAC

AN=AC

Do đó: ΔABN=ΔAMC

Gọi giao của ME với AB là D, NE với AC là F

góc AMD+góc MDA=90 độ

=>góc AMD+góc BDE=90 độ

=>góc DBE+góc BDE=90 độ

=>góc BED=90 độ

=>BN vuông góc với CM

b: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2

=CN^2+BM^2

=>MN^2=7+5-3=9cm

=>MN=3cm

21 tháng 12 2022

a: Xét ΔABN và ΔAMC có

AB=AM

góc BAN=góc MAC

AN=AC

Do đó: ΔABN=ΔAMC

Gọi giao của ME với AB là D, NE với AC là F

góc AMD+góc MDA=90 độ

=>góc AMD+góc BDE=90 độ

=>góc DBE+góc BDE=90 độ

=>góc BED=90 độ

=>BN vuông góc với CM

b: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2

=CN^2+BM^2

=>MN^2=7+5-3=9cm

=>MN=3cm