K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

B=-1/3+1/3^2-.....-1/3^51

3B=-1/3^2+1/3^3-.....-1/3^52

3B-B=(-1/3^2+1/3^3-....-1/3^52)-(-1/3+1/3^2-....-1/3^51)

2B= -1/3^52-1/3

2B= -1/3^52-3^51/3^52

2B= -1-3^51/3^52

B= -3^51-1/3^52x2

26 tháng 5 2022

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{50}}-\dfrac{1}{3^{51}}\)

\(=\dfrac{1}{\left(-3\right)}+\dfrac{1}{\left(-3\right)^2}+\dfrac{1}{\left(-3\right)^3}+...+\dfrac{1}{\left(-3\right)^{50}}+\dfrac{1}{\left(-3\right)^{51}}-\dfrac{1}{3}\)

\(=\dfrac{1}{\left(3\right)^2}+\dfrac{1}{\left(3\right)^3}+...+\dfrac{1}{\left(-3\right)^{51}}+\dfrac{1}{\left(-3\right)^{52}}\)

\(\Rightarrow\dfrac{4}{3}B=\dfrac{1}{-3}-\dfrac{1}{\left(-3\right)^{52}}=\dfrac{-3^{51}-1}{3^{52}}\Rightarrow B=\dfrac{-3^{51}-1}{4.3^{51}}\)

 

26 tháng 5 2022

undefined

18 tháng 4 2021

\(B=-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+....+\dfrac{1}{3^{50}}-\dfrac{1}{3^{51}}\)

=> \(3B=-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{49}}-\dfrac{1}{3^{50}}\)

=> \(4B=-1-\dfrac{1}{3^{51}}\)

=> \(B=\dfrac{-1-\dfrac{1}{3^{51}}}{4}\)

23 tháng 7 2015

a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(A=1-\frac{1}{2^{50}}

22 tháng 12 2016

Bạn Detective_conan giải đúng đấy!

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

Ta có: 

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

..........

\(\frac{1}{50^2}< \frac{1}{49.50}\)

Cộng theo vế:

\(B< \frac{1}{2^2}+\frac{1}{2.3}+...+\frac{1}{49.50}=\frac{1}{4}+\frac{3-2}{2.3}+....+\frac{50-49}{49.50}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{50}< \frac{3}{4}\)

Ta có đpcm