Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
\(a=2022.\left|x^2+1\right|+2023\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\left(\left|x^2+1\right|>0,\forall x\right)\)
mà \(\left(x^2+1\right)\ge1,\forall x\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\ge2022.1+2023=4045\)
\(\Rightarrow GTNN\left(a\right)=4045\left(x=0\right)\)
A = |\(x\) + 5| + 2023
|\(x\) + 5| ≥ 0 ⇒| \(x\) + 5| + 2023 ≥ 2023⇒ A(min) = 2023 xảy ra khi \(x\) = -5
B = (\(x+2\))2 - 2023
(\(x\) + 2)2 ≥ 0 ⇒ (\(x\) + 2)2 ≥ - 2023 ⇒ A(min) = -2023 xảy ra khi \(x\) = -2
C = \(x^2\) - 6\(x\) + 20
C = (\(x^2\) - 3\(x\)) - ( 3\(x\) - 9) + 11
C = \(x\)(\(x-3\)) - 3(\(x\) -3) + 11
C = (\(x-3\))(\(x\)-3) + 11
C = (\(x-3\))2 + 11
(\(x\) -3)2 ≥ 0 ⇒ (\(x\) - 3)2 + 11 ≥ 11 vậy C(min) = 11 xảy ra khi \(x=3\)
D = \(x^2\) + 10\(x\) - 25
D = \(x^2\) + 5\(x\) + 5\(x\) + 25 - 55
D = (\(x^2\) + 5\(x\)) + (5\(x\) + 25) - 50
D = \(x\)(\(x\) + 5) + 5(\(x\) + 5) - 50
D = (\(x\) +5)(\(x\) + 5) - 50
D = ( \(x\) + 5)2 - 50
(\(x+5\))2 ≥ 0 ⇒ (\(x\) + 5)2 - 50 ≥ -50 ⇒ D(min) = -50 xảy ra khi \(x\) = -5
Ta có: \(\left|x\right|>=0\forall x\)
=>\(\left|x\right|+2023>=2023\forall x\)
=>\(\dfrac{2022}{\left|x\right|+2023}< =\dfrac{2022}{2023}\forall x\)
=>\(A< =\dfrac{2022}{2023}\forall x\)
Dấu '=' xảy ra khi |x|=0
=>x=0
Vậy: \(A_{max}=\dfrac{2022}{2023}\) khi x=0
\(A=\dfrac{2022}{\left|x\right|+2023}\)
Ta thấy: \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{1}{\left|x\right|+2023}\le\dfrac{1}{2023}\forall x\)
\(\Rightarrow A=\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu \("="\) xảy ra khi: \(x=0\)
Vậy \(Max_A=\dfrac{2022}{2023}\) khi \(x=0\).
giá trị nhỏ nhất của biểu thức A là -4022
giải thích cụ thể và cách làm dc ko bn