K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

10 tháng 8 2023

\(a=2022.\left|x^2+1\right|+2023\)

\(\Rightarrow a=2022.\left(x^2+1\right)+2023\left(\left|x^2+1\right|>0,\forall x\right)\)

mà \(\left(x^2+1\right)\ge1,\forall x\)

\(\Rightarrow a=2022.\left(x^2+1\right)+2023\ge2022.1+2023=4045\)

\(\Rightarrow GTNN\left(a\right)=4045\left(x=0\right)\)

10 tháng 8 2023

GTNN(a) = 4045 khi x = 0

Câu 1: Biểu thức \(\sqrt{x^2+2023}-2024\) có giá trị nhỏ nhất bằng:A. \(\sqrt{2023}-2021\)B. -2024C. 0D. \(\sqrt{2023}\) Câu 2: Chọn khẳng định đúng trong các khẳng định sau:A. Hai góc kề nhau có tổng số đo bằng 1800.B. Hai góc so le trong bằng nhau.C. Hai góc đồng vị bằng nhau.D. Hai góc đối đỉnh bằng nhau. Câu 3: Cho a, b, c là ba đường thẳng phân biệt. Biết a song song với b và b vuông góc với c thì kết luận nào sau đây...
Đọc tiếp

Câu 1: Biểu thức \(\sqrt{x^2+2023}-2024\) có giá trị nhỏ nhất bằng:

A. \(\sqrt{2023}-2021\)
B. -2024

C. 0

D. \(\sqrt{2023}\)

 

Câu 2: Chọn khẳng định đúng trong các khẳng định sau:

A. Hai góc kề nhau có tổng số đo bằng 1800.

B. Hai góc so le trong bằng nhau.

C. Hai góc đồng vị bằng nhau.

D. Hai góc đối đỉnh bằng nhau.

 

Câu 3: Cho a, b, c là ba đường thẳng phân biệt. Biết a song song với b và b vuông góc với c thì kết luận nào sau đây đúng?

A. a song song với c.

B. a trùng với c.

C. a vuông góc với c.

D. a không vuông góc với c.

 

Câu 4: Trong các phát biểu sau, phát biểu nào diễn đạt đúng nội dung của tiền đề Euclid?

A. Qua điểm A nằm ngoài đường thẳng d có ít nhất một đường thẳng song song với d.

B. Nếu qua điểm A nằm ngoài đường thẳng d mà có hai đường thẳng cùng song song với d thì chúng trùng nhau.

C. Có duy nhất một đường thẳng song song với một đường thẳng cho trước.

D. Cho điểm A nằm ngoài đường thẳng d. Đường thẳng đi qua A và song song với d không phải là đường thẳng duy nhất.

3

1: Không cớ câu nào đúng

2D

3C

4B

7 tháng 10 2023

1A

2D

3C

4A

5 tháng 4 2016

Ta có:(các số như 14-x/4-x đc vt dưới dạng p số nha)
14-x/4-x=10+4-x/4-x=10/4-x+4-x/4-x=(10/4-x)+1
Để (10/4-x)+1 đạtGTNN=>10/4-x đạt GTNN =>4-x đạt GTLN
mà -x<_(bé hơn hoặc bằng)0
=> 4-x<_4
Vì 4-x đạt GTLN =>4-x=4=>x=0
khi đó, thay vào biểu thức, ta có:
14-0/4-0=14/4=3,5
Vậy GTNN của P bằng 3,5<=>x=0

26 tháng 8 2017
với x= 5, P = -9<3,5
2 tháng 3 2021

Ta có:\(\dfrac{14-x}{4-x}=\dfrac{10+4-x}{4-x}=\dfrac{10+\left(4-x\right)}{4-x}=1+\dfrac{10}{4-x}\)

Vì x∈Z,4∈Z=> 4-x∈Z

Để P đạt giá trị nhỏ nhất thì \(\dfrac{10}{4-x}\)phải đạt giá trị nhỏ nhất

=>4-x đạt giá trị lớn nhất

Và 4-x<0;4-x∈Z

Do đó 4-x=-1

     =>x=4+1=5

Khi đó P=\(\dfrac{14-5}{4-5}\)=-9

Vậy P đạt giá trị nhỏ nhất bằng -9 khi x=5

 

 

 

NM
6 tháng 9 2021

ta có 

\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)

Dấu bằng xảy ra khi \(-5\le x\le-2\)

\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)

Dấu bằng xảy ra khi \(x=2\)

\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)

Dấu bằng xảy ra khi \(x\ge2\)

3 tháng 8 2023

Nguyễn Minh Quang sai dấu câu A rồi

 

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8