Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Có \(\left|x+1\right|+\left(y-2\right)^2=0\)
-Vì \(\left|x+1\right|\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left|x+1\right|=0\) ; \(\left(y-2\right)^2=0\)
\(\Rightarrow x=-1;y=2\)
-Thay \(x=-1;y=2\) vào \(C=2x^6y-3xy^3-20\) ta được:
\(C=2.\left(-1\right)^6.2-3.\left(-1\right).2^3-20=8\)
a) 2009 - |x - 2009| = x
=> |x - 2009| = 2009 - x (1)
ĐK : \(2009-x\ge0\Leftrightarrow x\le2009\)
Ta có (1) <=> \(\orbr{\begin{cases}x-2009=2009\\x-2009=-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2009\left(\text{loại}\right)\end{cases}}}\)
Vậy x = 0
b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2018}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2020}+\left|x+y-z\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)
\(\text{b)}\)
\(\text{Ta có: }\text{ }\left(2x-1\right)^{2018}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2020}\ge0\)
\(\text{ và}\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)=0\)
\(\text{Dấu "=" xảy ra khi:}\)
\(\left(2x-1\right)^{2018}=0\)
\(\Rightarrow2x-1\) \(=0\)
\(\Rightarrow2x\) \(=1\)
\(\Rightarrow x\) \(=\frac{1}{2}\)
\(\text{ và:}\left(y-\frac{2}{5}\right)^{2020}=0\)
\(\Rightarrow y-\frac{2}{5}\) \(=0\)
\(\Rightarrow y\) \(=\frac{2}{5}\)
\(\text{Nhớ k cho mình với nghe}\) :33
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
a) Ta có : (2x - 1)100 + (x - y)102 = 0
<=> \(\hept{\begin{cases}2x-1=0\\x-y=0\end{cases}}\)
<=> \(\hept{\begin{cases}2x=1\\x=y\end{cases}}\)
<=> \(x=y=\frac{1}{2}\)
b) Ta có: |x - 3| + (x + y)2020 = 0
<=> \(\hept{\begin{cases}x-3=0\\x+y=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=-x\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
Với x = 3 và y = -3 thay vào biểu thức A :
A = \(3^2.\left[3+\left(-3\right)\right]^{100}=9.0^{100}=0\)
a) Ta có (2x - 1)100 \(\ge\)0 với mọi x
(x - y)102 \(\ge\)0 với mọi x,y
Do đó : (2x - 1)100 + (x - y)102 \(\ge\)0 với mọi x,y
Và (2x-1)100 + (x-y)102 = 0
<=> 2x - 1 = 0 <=> x = 1/2
và x - y = 0 và y = 1/2
b) Ta có : |x - 3| \(\ge\)0 với mọi x
(x + y)2020\(\ge\)0 với mọi x,y
Do đó : |x - 3| + (x + y)2020 \(\ge\)0 với mọi x,y
Và |x - 3| + (x + y)2020 = 0
<=> x - 3 = 0 <=> x = 3
và x + y = 0 và y = -3
Rồi tự thay vào r tính A đi eiu :)